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Relativistic MHD

e |ecture 1: Astrophysical Motivation
» | ecture 2: Basic Equations, GRMHD Boot Camp
* | ecture 3: Numerical Methods

e Lecture 4: Radiative Transport and Analysis




Lecture 1: Astrophysical
Motivation

* What is relativistic (magneto)hydrodynamics?
* \What are the (astro)physical applications?
* Accreting black holes

 Open guestions
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Application Summary

black holes: jets:
tidal disruption events gamma-ray bursts
high, low accretion rate AGN extragalactic radio jets
X-ray binaries galactic microquasars

long-soft GRBs

BH-BH and BH-NS mergers,  planetary magnetospheres
LIGO source progenitors

relativistic heavy ion collisions
neutron stars:

pulsar magnetospheres electron-fluid dynamics
core-collapse supernovae
short-hard GRBs

NS-NS mergers
LIGO source progenitors




Tidal Disruption Event

By

Shiokawa+ 2015




M87 Jet, 43 GHz, VLBA
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Observation of Gravitational Waves from a Binary Black Hole Merger

B.P. Abbott ef al.”
(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 21 January 2016; published 11 February 2016)

On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave
Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in
frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0 x 10~2!. It matches the waveform
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a

false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater
than 5.16. The source lies at a luminosity distance of 4 10f11868 Mpc corresponding to a redshift z = 0.09f8:82.
In the source frame, the initial black hole masses are 363 M, and 297 M, and the final black hole mass is

621L2M®, with 3.0f8"§ M ¢? radiated in gravitational waves. All uncertainties define 90% credible intervals.

Fermi GBM Observations of LIGO Gravitational Wave event GW150914

V. Connaughton*!, E. Burns?, A. Goldstein™3, M. S. Briggs?, B.-B. Zhang® C. M. Hui?,
P. Jenke®, J. Racusin®, C. A. Wilson-Hodge?, P. N. Bhat®, E. Bissaldi’, W. Cleveland!,
G. Fitzpatrick®, M. M. Giles®, M. H. Gibby®, J. Greiner®, A. von Kienlin®, R. M. Kippen!?,
S. McBreen!!, B. Mailyan®, C. A. Meegan®, W. S. Paciesas!, R. D. Preece*, O. Roberts!?,
L. Sparke!?, M. Stanbro?, K. Toelge?, P. Veres®, H.-F. Yu>!3

and other authors

week ending

PRL 116, 061102 (2016) PHYSICAL REVIEW LETTERS 12 FEBRUARY 2016
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NS-NS mergers / short-hard GRB?

Shapiro, lllinois Relativity Group
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Pulsar Magnetosphere - Force-Free MHD
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core-collapse
supernova

Mosta+ 2014




Earth’'s Magnetosphere

January 10
23:55:01




Relativistic Heavy lon Collision

1. Hirano




ELECTRON TRANSPORT

Evidence for hydrodynamic electron
flow in PdCOOz

Philip J. W. Moll,*? Pallavi Kushwaha,”> Nabhanila Nandi,>
Burkhard Schmidt,” Andrew P. Mackenzie®**

Electron transport is conventionally determined by the momentum-relaxing scattering of
electrons by the host solid and its excitations. Hydrodynamic fluid flow through
channels, in contrast, is determined partly by the viscosity of the fluid, which is governed
by momentum-conserving internal collisions. A long-standing question in the physics

of solids has been whether the viscosity of the electron fluid plays an observable role in
determining the resistance. We report experimental evidence that the resistance of
restricted channels of the ultrapure two-dimensional metal palladium cobaltate (PdCo0,)
has a large viscous contribution. Comparison with theory allows an estimate of the
electronic viscosity in the range between 6 x 10> kg m* st and 3 x 107* kg m™*s™,
versus 1 x 1073 kg m™ s for water at room temperature.
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Modes of Accretion

Low accretion rate
M<M,_, =L, /()
Radiatively Inefficient Accretion Flow (RIAF)
optically thin, geometrically thick

High accretion rate
M>10"M,,
classical disk (Shakura-Sunyaev)
optically thick, geometrically thin
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Modes of Accretion

M<M,_, =L, /()
Radiatively Inefficient Accretion Flow (RIAF)
optically thin, geometrically thick

High accretion rate
M>10"M,,
classical disk (Shakura-Sunyaev)
optically thick, geometrically thin




Modes of Accretion

Galactic center: Sgr A*
M<M,_, =L, /()
Radiatively Inefficient Accretion Flow (RIAF)
optically thin, geometrically thick

High accretion rate
M>10"M,,
classical disk (Shakura-Sunyaev)
optically thick, geometrically thin
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South Pole Telescope




Event Horizon Telescope: global submm VLBI network

courtesy L. Vertatschitsch



Dynamical Model

ideal MHD (fluid)

fully relativistic

Kerr metric (includes spin a)
nonradiative

harm code




Time=0

H. Shiokawa

Noble’s
harm3d

Color:
Rest-mass
density
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plane
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20s

a/M ~ 0.93



Time in hours: 0.000
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harm code

go to

https://github.com/AFD-I1llinois/iharm2d v3

download zip file, unzip

cd iharm2d v3-master

README file describes typical workflow
cd prob:kerr torus

make

run; ./harm
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L ecture 2: Fundamentals
of Relativistic MHD

Nonrelativistic hydrodynamics
Relativistic hydrodynamics
Nonrelativistic MHD

Relativistic MHD

Cleanup: gravity, conservation laws, black holes




Particle number conservation:

(/=g pou’) = —8;(v/—g pott’) op=—-V-(pv)

Ideal MHD:
P =0 E+v xB/c=0

Momentum and energy conservation:

8 (vV=gT") = =0 (V=9T") + V/—gT"\[ .«
("_),‘(/)\") = -V :T-—-pVo
b2 b2 bubs

4,~)u”u“ + (p+ 8_,~)‘q’”’ —

Tw =(pot+ut+p+ s

- B2 . B;B,
[.‘. = pU;v; - (/)—}— - )f)., v J
| | smw” 47

Induction equation:

8, (v/—gB') = —9;(v/—g(w'b — bu')) B

No monopoles constraint:

8i(v/—gB) =0
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Lecture 3: Numerical
Methods

* Review of basic equations
e Kurganov-ladmor scheme
e Variable inversion

* Reconstruction

» Constrained transport

e Jesting







Feynman:

“the first principle is that you must not fool yourselt,
and you are the easiest person to fool.”

“I'm talking about a specific, extra type of integrity
that is not lying, but bending over backwards to
show how you're maybe wrong, [an integrity] that
you ought to have when acting as a scientist. And
this is our responsibility as scientists”

In computational astrophysics:
- test your code
- identity failure modes




minmod

Alfven wave
test problem

Gammie+ 2003
convergence test

VS.
linear theory

Pi(f) = | [f] d2x
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convergence test
vs. VAC

Pi(f) = | [f] d2x
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Kerr inflow
(inside-out
Parker wind)

Gammie+ 2003
convergence test

VS.
“‘exact” solution

Pi(f) = | |f] d2x




Field loop advection test

harm color shows b2 Az ~ MAX(ro - 1,0)




Field loop advection test

harm color shows |2 A, ~ MAX(ro - 1,0)




Field loop advection test

athena color shows 2 Az ~ MAX(ro - 1,0)




Field loop advection test

harm color shows b2 A, ~ exp(-r2/w?)




Field loop advection test

O

harm color shows |2 Az ~ exp(-r2/w2)




Komissarov’'s sadistic explosion problem

O

color shows log density
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Lecture 4: Analysis and
Radiative Transport

relativistic radiative transport

Ibothros code:

https://github.com/AFD-I1linois/ibothros2d




ibothros2d output: sweep over inclination angle

color shows |y, at A = Tmm




ibothros2d output: sweep over inclination angle

color shows log(ly) at A = 1Tmm
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