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black holes:
tidal disruption events 
high, low accretion rate AGN 
x-ray binaries 
long-soft GRBs 
BH-BH and BH-NS mergers,  
      LIGO source progenitors 

neutron stars:
pulsar magnetospheres 
core-collapse supernovae 
short-hard GRBs 
NS-NS mergers 
      LIGO source progenitors 

jets:
gamma-ray bursts 
extragalactic radio jets 
galactic microquasars 

planetary magnetospheres

relativistic heavy ion collisions

electron-fluid dynamics

Application Summary
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Modes of Accretion
Low accretion rate 

Radiatively Inefficient Accretion Flow (RIAF) 
optically thin, geometrically thick 

High accretion rate 

classical disk (Shakura-Sunyaev) 
optically thick, geometrically thin

!M ≪ !MEdd ≡ LEdd / (εc
2 )

!M !10−2 !MEdd
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Modes of Accretion
Low accretion rate       Galactic center: Sgr A* 

Radiatively Inefficient Accretion Flow (RIAF) 
optically thin, geometrically thick 

High accretion rate 

classical disk (Shakura-Sunyaev) 
optically thick, geometrically thin

!M ≪ !MEdd ≡ LEdd / (εc
2 )

!M !10−2 !MEdd
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Dynamical Model

• ideal MHD (fluid) 

• fully relativistic 

• Kerr metric (includes spin a) 

• nonradiative 

• harm code
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harm code
go to 

https://github.com/AFD-Illinois/iharm2d_v3

download zip file, unzip 

cd iharm2d_v3-master   

README file describes typical workflow 

cd prob:kerr_torus

make

run:  ./harm



log ρ (x1, x2) log ρ (r, θ)
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• Nonrelativistic hydrodynamics 

• Relativistic hydrodynamics 

• Nonrelativistic MHD 

• Relativistic MHD 

• Cleanup: gravity, conservation laws, black holes

Lecture 2: Fundamentals 
of Relativistic MHD
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• Review of basic equations 

• Kurganov-Tadmor scheme 

• Variable inversion 

• Reconstruction 

• Constrained transport 

• Testing

Lecture 3: Numerical 
Methods





Feynman: 

“the first principle is that you must not fool yourself, 
and you are the easiest person to fool.” 

“I'm talking about a specific, extra type of integrity 
that is not lying, but bending over backwards to 
show how you're maybe wrong, [an integrity] that 
you ought to have when acting as a scientist. And 
this is our responsibility as scientists” 

In computational astrophysics:  
- test your code 
- identify failure modes



Alfven wave 
test problem 

Gammie+ 2003 

convergence test 
vs. 
linear theory 

ℒ1(f) ≡ ∫ |f| d2x



Orszag-Tang  
Vortex 

Gammie+ 2003 

nonlinear 
test 
vs. 
VAC



Orszag-Tang  
Vortex 

Gammie+ 2003 

convergence test 
vs. VAC 

ℒ1(f) ≡ ∫ |f| d2x



Kerr inflow 
(inside-out  
Parker wind) 

Gammie+ 2003 

convergence test 
vs.  
“exact” solution 

ℒ1(f) ≡ ∫ |f| d2x



Field loop advection test

harm         color shows b2      Az ~ MAX(r0 - r,0)



Field loop advection test

harm         color shows j2      Az ~ MAX(r0 - r,0)



Field loop advection test

athena         color shows j2      Az ~ MAX(r0 - r,0)



Field loop advection test

harm         color shows b2      Az ∼ exp(-r2/w2)



Field loop advection test

harm         color shows j2      Az ∼ exp(-r2/w2)



Komissarov’s sadistic explosion problem

color shows log density
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relativistic radiative transport 

ibothros code:  

https://github.com/AFD-Illinois/ibothros2d

Lecture 4: Analysis and 
Radiative Transport



ibothros2d output: sweep over inclination angle

color shows I𝝂  at  λ = 1mm



ibothros2d output: sweep over inclination angle

color shows log(I𝝂)  at  λ = 1mm
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