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Challenge	of	modelling	mul)ple	physical	levels	
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From	"Elegant	Universe"	by	B.	Greene	



A plasma and its models 

Single particle level: tracing every 
single particle and their 
interactions:  

 

Kinetic approach: study the 
distribution function (probability of 
finding a particle with a given 
velocity in a given point at a given 
time):  

 

Fluid approach: study local averages 
(density, average speed, 
temperature,….) 
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Macro:	Fluid	Theory	

Wassily	Kandinsky:	Squares	and	Concentric	Rings	



Sweet	exists	by	conven-on,		
BiGer	by	conven-on,	
Colour	by		conven-on;		
Atoms	and	void	alone	exist	in	
reality.	



Micro:	Kine)c	Theory	

Zheng	Yang,	Peter	Májek,	and	Ivet	Bahar	(2009)	Allosteric	Transi-ons	of	Supramolecular	Systems	Explored	by	Network	
Models:	Applica-on	to	Chaperonin	GroEL.	PLoS	Comput	Biol	5(4):	e1000360.	



The	two	
approaches	
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Lagrange	



Fluid	Approach	
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PIC	Kine)c	model	
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Lecture	Structure	

Deriva-on	of	the	
basic	PIC	algorithm	

PIC	in	astrophysical	
problems	

Stability	and	Mul-ple	
scale	problems	



Summary	of	Lecture	1:	Deriva)on	of	the	basic	PIC	
algorithm	

Physical	Heuris-c	
deriva-on	

Mathema-cal	
Deriva-on	

Code	Skeleton	
(Python)	



Summary	of	Lecture	1:	Deriva)on	of	the	basic	PIC	
algorithm	

Physical	Heuris-c	
deriva-on	

Mathema-cal	Deriva-on	

Code	Skeleton	(Python)	



Typical Plasmas 



Examples in nature 



Coupling parameter Γ 

n  Plasma Coupling parameter 
 

 

 

n  Quantum effects 

 

n  Relativistic effects 

quantum

Strong 
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Strongly Coupled Systems:  
a thought experiment 

Mo-on	of	a	par-cle	determined	by	the	near	neighbor	
interac-ons	

Few	par-cle	interac-ons	

Mean	field	approxima-on	not	valid	

Boltzmann	and	Klimontovich	equa-on	



Weakly Coupled Systems:  
a thought experiment 

Mo-on	of	a	par-cle	determined	by	the	collec-ve	
behavior	of		many	others	

Many	par-cle	interac-ons	

Mean	field	approxima-on	

Vlasov	equa-on	



Kinetic simulation models 

Direct simulation: 
Particle-Particle 

Indirect simulation: 
Particle-Mesh 



Particle – Particle(PP) 
Molecular Dynamics (MD) 



Numerical	modeling:	Par)cle-Par)cle	or	N-body	approach	
Numerical modeling: Particle-Particle or N-body approach 

•
𝛿𝑡

•
𝒙𝑝𝑛𝑒𝑤 = 𝒙𝑝𝑜𝑙𝑑 + 𝛿𝑡𝝊𝑝𝑜𝑙𝑑,
𝝊𝑝𝑛𝑒𝑤 = 𝝊𝑝𝑜𝑙𝑑 + 𝛿𝑡𝑭/𝑚,

𝑭

𝑭𝑝 = 𝑭𝑝𝑝′.
𝑝′

•

𝑭𝑝𝑝′ =
𝑞𝑝𝑞𝑝′

4𝜋𝜖0 𝒙𝑝 − 𝒙𝑝′
⋅
𝒙𝑝 − 𝒙𝑝′
𝒙𝑝 − 𝒙𝑝′

.

•
• 𝑁(𝑁 − 1)/2
• 𝑂 𝑁log𝑁
•



Barnes-Hut Hierarchical Force-calculation 
Algorithm 



Collapsing	void	from	N-body	simulation	

hGps://www.astro.rug.nl/~weygaert/voidhierarchy.html	



Molecular	dynamics	

Pei	Tang,	and	Yan	Xu	PNAS	2002;99:16035-16040	
	



Particle – Mesh (PM) 
Particle In Cell (PIC) 

How can this behaviour be 
represented with a 
manageable number of 
computational agents?  



Idea of the PIC method: Finite-sized particles 

Two finite-sized particles moving closer 

Finite-size	par-cles	

Far:	behave	like	point	par-cles	

Close	(overlap):	the	area	overlapped	does	
not	contribute	to	the	force	

At	short	range	the	interac-on	is	much	weaker	



A ensemble of finite-sized particles 



Particle In Cell approach  



Using a mesh 



Summary	of	Lecture	1:	Deriva)on	of	the	basic	PIC	
algorithm	

Physical	Heuris-c	deriva-on	

Mathema-cal		
Deriva-on	

Code	Skeleton	(Python)	



Deriva)on	of	the	Par)cle-in-Cell	(PIC)	method	
Example	of	1D	electrosta)c	

Derivation of the Particle-in-Cell (PIC) method: Assumptions 

•

•

𝜕𝑓𝑠
𝜕𝑡
+ 𝜐
𝜕𝑓𝑠
𝜕𝑥
+
𝑞𝑠𝐸
𝑚𝑠
𝜕𝑓𝑠
𝜕𝜐
= 0

•

𝜖0
𝜕2𝜙
𝜕𝑥2
= −𝜌

•

𝜌 𝑥, 𝑡 = 𝑞𝑠  𝑓𝑠 𝑥, 𝜐, 𝑡 𝑑𝜐
𝑠



Phase space 



Derivation	of	PIC:	numerical	representation	

Derivation of PIC: numerical representation 

•

𝑓𝑠 𝑥, 𝜐, 𝑡 = 𝑓𝑝 𝑥, 𝜐, 𝑡
𝑝

.

•

𝑓𝑝 𝑥, 𝜐, 𝑡 = 𝑁𝑝𝑆𝑥 𝑥 − 𝑥𝑝 𝑡 𝑆𝜐 𝜐 − 𝜐 𝑡 ,
𝑆𝑥 𝑆𝜐

•
 𝑆𝜉 𝜉 − 𝜉𝑝 𝑑𝜉 = 1
∞

−∞
.

• 𝑁𝑝



Proper)es	of	the	Shape	func)ons	

1.3. PARTICLE IN CELL METHOD 7

The PIC method is based upon assigning to each computational particle a specific func-
tional form for its distribution, a functional form with a number of free parameters whose
time evolution will determine the numerical solution of the Vlasov equation [14]. In the stan-
dard PIC methods [4, 28], the choice is made to have two free parameters in the functional
shape for each spatial dimension. The free parameters will acquire the physical meaning of
position and velocity of the computational particle. More advanced method take into account
also the evolving shape of the physical cloud the super particle is supposed to represent [14].

In the standard PIC model, the functional dependence is assumed to be a tensor product
of the shape in each direction of phase space [28]:

fp(x,v, t) = NpS
x

(x�xp(t))Sv

(v�vp(t)) (1.12)

where S
x

and S
v

are the shape functions for the computational particles and Np is the num-
ber of physical particles that are present in the element of phase space represented by the
computational particle.

A number of properties of the shape functions come from their definition:

1. The support of the shape functions is compact, to describe a small portion of phase
space, (i.e. it is zero outside a small range).

2. Their integral over the domain is unitary:
Z

V
x

S
x

(x �xp)dx = 1 (1.13)

where x stands for any coordinate or any velocity direction.

3. While not strictly necessary, Occam’s razor suggests to choose symmetric shapes:

S
x

(x �xp) = S
x

(xp �x ) (1.14)

While these definitions still leave very broad freedom in choosing the shape functions,
traditionally the choices actually used in practice are very few.

1.3.2 Selection of the particle shapes

A critical choice in the definition of a PIC algorithm is the choice of the shape functions.
For the velocity, S

v

, virtually all PIC methods assume a Dirac’s delta in each direction:

S
v

(v�vp) = d (vx � vxp)d (vy � vyp)d (vz � vzp) (1.15)

This choice has the fundamental advantage that if all particles within the element of phase
space described by one computational particle have the same speed, they remain closer in
phase space during the subsequent evolution.

The original PIC methods developed in the 50’s were based on using a Dirac’s delta also
as the shape function in space. But now for the spatial shape functions, all commonly used
PIC methods are based on the use of the so-called b-splines [5]. The b-spline functions are a



Derivation	of	PIC:	shape	function	choice	

Derivation of PIC: shape function choice 
•

𝑆𝜐 𝜐 − 𝜐𝑝 = 𝛿 𝜐 − 𝜐𝑝 .

•
𝑏0 𝑥 =  1 if 𝑥 < 0.5

0 otherwise

𝑏𝑛+1 =  𝑑𝑥′𝑏0 𝑥 − 𝑥′ 𝑏𝑛 𝑥′
∞

−∞
.

•

𝑆𝑥 𝑥 − 𝑥𝑝 =
1
Δ𝑝
𝑏𝑛

𝑥 − 𝑥𝑝
Δ𝑝



B-Spline shape functions 

8 CHAPTER 1. PARTICLE-BASED SIMULATION OF PLASMAS

series of consecutively higher order functions obtained from each other by integration. The
first b-spline is the flat-top function b0(x ) defined as:

b0(x ) =

8
<

:

1 i f |x |< 1/2

0 otherwise
(1.16)

The subsequent b-splines, b`, are obtained by successive integration via the following gen-
erating formula:

b`(x ) =
Z •

�•
dx

0b0(x �x

0)b`�1(x
0) (1.17)

Figure 1.3 shows the first three b-splines.
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Figure 1.3: First three b-spline functions, b`(x ).

Two crucial properties of splines are :

(a) when a b-spline of any order is evaluated on a uniform grid of step 1, the sum over all
points of evaluation is unitary, regardless of the central point x of the b-spline:

Â
i

b`(x + i) = 1, (1.18)

a property of great convenience in particle interpolation;

(b) The integral of b-splines of any order is unitary:
Z •

�•
b`(x )dx = 1. (1.19)

(c) The Dirac’s delta d (x ) can be regarded as b�1(x ).
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Crucial	proper)es	of	the	b-splines	

8 CHAPTER 1. PARTICLE-BASED SIMULATION OF PLASMAS
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PIC:	equations	of	motion	1	

PIC: equations of motion 1 

• 𝑥𝑝 𝜐𝑝

• 𝑓𝑝 𝑥, 𝜐, 𝑡

𝜕𝑓𝑝
𝜕𝑡

+ 𝜐
𝜕𝑓𝑝
𝜕𝑥

+
𝑞𝑠𝐸
𝑚𝑠

𝜕𝑓𝑝
𝜕𝜐

= 0

𝑓𝑠 =  𝑓𝑝

•

•



PIC:	equations	of	motion	2	
PIC: equations of motion 2 
• … ≡  𝑑𝑥  𝑑𝜐
•

𝜕 𝑓𝑝
𝜕𝑡

+ 𝜐
𝜕𝑓𝑝
𝜕𝑥

+
𝑞𝑠𝐸
𝑚𝑠

𝜕𝑓𝑝
𝜕𝜐

= 0

𝑑𝑁𝑝
𝑑𝑡

= 0

•
𝜕 𝑓𝑝𝑥
𝜕𝑡

+ 𝜐𝑥
𝜕𝑓𝑝
𝜕𝑥

+ 𝑥
𝑞𝑠𝐸
𝑚𝑠

𝜕𝑓𝑝
𝜕𝜐

= 0

𝑑𝑥𝑝
𝑑𝑡

= 𝜐𝑝
•

𝜕 𝑓𝑝𝜐
𝜕𝑡

+ 𝜐2
𝜕𝑓𝑝
𝜕𝑥

+ 𝜐
𝑞𝑠𝐸
𝑚𝑠

𝜕𝑓𝑝
𝜕𝜐

= 0

𝑑𝜐𝑝
𝑑𝑡

=
𝑞𝑠
𝑚𝑠

𝐸𝑝

•



PIC:	equations	of	motion	3	
PIC: equations of motion 3 

•

𝑑𝑁𝑝
𝑑𝑡
= 0

𝑑𝑥𝑝
𝑑𝑡
= 𝜐𝑝

𝑑𝜐𝑝
𝑑𝑡
=
𝑞𝑠
𝑚𝑠
𝐸𝑝

 

𝜌𝑠 𝑥, 𝑡 =  𝑞𝑠𝑁𝑝𝑆𝑥 𝑥 − 𝑥𝑝
𝑝



Field Equations 

φi



PIC:	Bield	equations	1	(solving	Poisson’s)	

PIC: field equations 1 (solving Poisson’s) 
• Δ𝑥
•

𝜖0
𝜙𝑖+1 − 2𝜙𝑖 + 𝜙𝑖−1

Δ𝑥2
= −𝜌𝑖,

𝜌𝑖 =
1

𝑥𝑖+1/2 − 𝑥𝑖−1/2
 𝜌 𝑥 𝑑𝑥
𝑥𝑖+1/2

𝑥𝑖−1/2
.

•

 𝜌 𝑥 𝑑𝑥
𝑥𝑖+1/2

𝑥𝑖−1/2
=  𝑏0

𝑥 − 𝑥𝑖
Δ𝑥
𝜌 𝑥 𝑑𝑥

∞

−∞

•
𝑆𝑥 𝑥 − 𝑥𝑝

𝑊 𝑥𝑖 − 𝑥𝑝 =  𝑆𝑥 𝑥 − 𝑥𝑝 𝑏0
𝑥𝑖 − 𝑥𝑖
Δ𝑥

•

𝜌𝑖 = 
𝑞𝑝
Δ𝑥
𝑊 𝑥𝑖 − 𝑥𝑝

𝑝

,    𝑞𝑝 = 𝑞𝑠𝑁𝑝



Interpolation function 



PIC:	Bield	equations	2	(computing	electric	Bield)	PIC: field equations 2 (computing electric field) 

• cells 𝜙𝑖
•

𝐸𝑖 = −
𝜙𝑖+1 − 𝜙𝑖−1
2Δ𝑥

.

•

𝐸 𝑥 = 𝐸𝑖𝑏0
𝑥 − 𝑥𝑖
Δ𝑥

𝑖

.

•

𝐸𝑝 = 𝐸𝑖  𝑏0
𝑥 − 𝑥𝑖
Δ𝑥
𝑆𝑥 𝑥 − 𝑥𝑝

𝑖

.

•

𝐸𝑝 = 𝐸𝑖𝑊 𝑥𝑖 − 𝑥𝑝
𝑖

.



PIC:	moving	particles	
PIC: moving particles 
•

•

•

𝑥𝑝𝑛+1 = 𝑥𝑝𝑛 + Δ𝑡𝜐𝑝
𝑛+1/2

𝜐𝑝
𝑛+3/2 = 𝜐𝑝

𝑛+1/2 + Δ𝑡
𝑞𝑠
𝑚𝑠

𝐸𝑝 𝑥𝑝𝑛+1

𝜐𝑝
1/2 = 𝜐𝑝0 + Δ𝑡

𝑞𝑠
𝑚𝑠

𝐸𝑝 𝑥𝑝0



Summary	of	Lecture	1:	Deriva)on	of	the	basic	PIC	
algorithm	

Physical	Heuris-c	deriva-on	

Mathema-cal	Deriva-on	

Code	Skeleton		
(Python)	



Developing a simple PIC code 
14 CHAPTER 1. PARTICLE-BASED SIMULATION OF PLASMAS

grid. The interpolation formulas derived above provide the rule to exchange information
between grid and particles.

Figure 1.4: Illustration of the coupling between Maxwell’s and Newton’s equations. New-
ton’s equations need the electric and magnetic fields and Maxwell’s equations need the par-
ticle positions to compute the sources: current and density. The computational particles are
indicated as coloured dots, bigger yellow ions and smaller orange electrons. The dot size is
indicative of the mass of the particles, not their sizes. All computational particles have the
same size: their size is identical to the size of the cells but with their centre on the centre of
the particles.

The question is how to deal with the coupling of Maxwell’s equations for the fields and
Newton’s equations for the computational particles. In principle as the particles move, the
fields evolve as well, any change in one side of Fig. 1.4 reflects on the other. The first point
to keep in mind is the vastness of the information being exchanged. Modern PIC methods on
supercomputers (i.e. parallel computers made of hundreds of thousands of processors) use
millions of cells and billions of particles. In fact, the state of the art is starting to reach the
trillion particle level. The desire to use more and more particles to cover phase space more
accurately suggests to keep the operations per particle as simple as possible.

This guiding principle has long suggested to use explicit methods, a decision whose
wisdom will be questioned below. In explicit methods, the two sets of equations, Maxwell’s
and Newton’s are solved in a marching order. Using the visualisation scheme in Fig. 1.4, we
can assume that each side can be advanced for a small time step, while the other is assumed
temporarily frozen. We can advance the particles for a small time step in given fields. We
use then the new particle positions and speeds to compute the current and density to advance
the fields for the same small time step. If the time step is small enough, this procedure has
a small error. The method just described is called explicit. The advantages of the explicit
approach is to be extremely simple but the disadvantage is that the time step has to be very
small.
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1.7 Annotated Python Code

To make it all more concrete, we present now a complete functioning PIC code. We choose
the simplest case: 1D and electrostatic with electrons being followed as particles but ions
forming a fixed background of uniform density. This last assumption is justified by the
heavy mass of the ions. Once this code is fully understood going to full 3D electromagnetic
is truly a simple step.

We choose the python language, but on the web site of the author other versions (clas-
sical, relativistic, electrostatic, electromagnetic, implicit, explicit) are available: https://
perswww.kuleuven.be/⇠u0052182/. The graphical parts to output the data are also available
on the web site but are not discussed here.

Initialisation

As a first step, some python initialisations are needed.

import numpy as np

import pylab as plt

from scipy import sparse

from scipy.sparse import linalg

We then need to initialise the definition of the simulation, in terms of domain size and
of the grid used to discretise it. Next, the time step is set with the number of cycles to be
run. The next step is to define the plasma density. We use normalised units where the plasma
frequency is set to be unitary. But physical units can be used.

The ion uniform background is set to exactly balance the charge of the particles (that are
all electrons in this simple model).

# Simulation parameters

L = 20*np.pi #20*np.pi # Domain size

NG = 80 # Number of grid cells

N = NG * 200 # Number of particles (200 per cell for example)

dx = L / NG # Cell size

DT = 0.005 # Time step

NT = 50000 # Number of time steps

WP = 1. # Plasma frequency

QM = -1. # Charge/mass ratio

Q = WP**2 / (QM*N/L) # rho0*L/N: charge carried by a single particle

rho_back = -Q*N/L # Background charge density
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Particle Initialisation

We then initialise the electrons. We choose a classic problem of two-stream instability [24]
where the initial electrons are subdivided into two equal beams of opposite mean velocity
but equal density and thermal speed.

#Particle initial properties

V0 = 0.9 # Stream velocity

VT = 0.0000001 # Thermal speed

# perturbation

XP1 = 1.0

mode = 1

# particles (electrons)

xp = np.linspace(0, L-L/N, N).T # Particle positions

vp = VT * np.random.randn(N) # Particle momentum, initially Maxwellian

pm = np.arange(N)

pm = 1 - 2 * np.mod(pm+1, 2) # Even and odd particles have opposite speed

vp += pm * V0 # Momentum + stream velocity

np.random.shuffle(v) # We reshuffle the indices to avoid any bias

# Add electron perturbation to excite the desired mode

xp += XP1 * (L/N) * np.sin(2 * np.pi * xp / L * mode)

xp[np.where(xp < 0)] += L

xp[np.where(xp >= L)] -= L

Grid Initialisation

In the 1D electrostatic limit, the Maxwell equations reduce to just the Poisson equation:

� e0—2
f = eni � ene (1.67)

where ni is the uniform background ion density and ne is the electron density projected to
the grid from the particles. The —2 operator is discretised as in the simplest textbook finite
difference method [53]:

� e0(fi+1 +fi�1 �2fi) = (eni � ene)Dx2 (1.68)

The potential is computed in the cell centres. The continuum is subdivided in cells in-
dexed by i with i 2 [0,NG�1] (note than python as C and C++ counts the indices in vectors
from 0, in MATLAB the same index range would be 1 to NG).

Of course, the first cell and the last cell have a problem: we do not have the neighbouring
cell outside. This challenge is called boundary condition and it is the worst nightmare any
computational scientist can experience. Boundary conditions are pure distilled evil. An
evil we will avoid with a double trick. First, we use periodic boundary conditions: the left
neighbour of the first cell is the last cells and the right neighbour of the last cell is the first



Example:	Two	Stream	Instability	
Example 2: two-stream instability 

•

𝑓 𝜐 =
𝑛0

2
𝛿 𝜐 −  𝜐0 +

𝑛0

2
𝛿 𝜐 + 𝜐0 .

•

1 −
𝜔𝑝

2

2
1

𝜔 − 𝑘𝜐0
2 +

1
𝜔 + 𝑘𝜐0

2 = 0.

𝜔𝑝

•

1 −
𝜔𝑝

2

2𝛾0

1
𝛾0𝜔 − 𝑘𝜐0𝛾0

2 +
1

𝛾0𝜔 + 𝑘𝜐0𝛾0
2 = 0,

𝛾0 = 1 −
𝜐0

2

𝑐2 .



Grid	Ini)aliza)on	

1.7. ANNOTATED PYTHON CODE 29

Particle Initialisation

We then initialise the electrons. We choose a classic problem of two-stream instability [24]
where the initial electrons are subdivided into two equal beams of opposite mean velocity
but equal density and thermal speed.

#Particle initial properties

V0 = 0.9 # Stream velocity

VT = 0.0000001 # Thermal speed

# perturbation

XP1 = 1.0

mode = 1

# particles (electrons)

xp = np.linspace(0, L-L/N, N).T # Particle positions

vp = VT * np.random.randn(N) # Particle momentum, initially Maxwellian

pm = np.arange(N)

pm = 1 - 2 * np.mod(pm+1, 2) # Even and odd particles have opposite speed

vp += pm * V0 # Momentum + stream velocity

np.random.shuffle(v) # We reshuffle the indices to avoid any bias

# Add electron perturbation to excite the desired mode

xp += XP1 * (L/N) * np.sin(2 * np.pi * xp / L * mode)

xp[np.where(xp < 0)] += L

xp[np.where(xp >= L)] -= L

Grid Initialisation

In the 1D electrostatic limit, the Maxwell equations reduce to just the Poisson equation:

� e0—2
f = eni � ene (1.67)

where ni is the uniform background ion density and ne is the electron density projected to
the grid from the particles. The —2 operator is discretised as in the simplest textbook finite
difference method [53]:

� e0(fi+1 +fi�1 �2fi) = (eni � ene)Dx2 (1.68)

The potential is computed in the cell centres. The continuum is subdivided in cells in-
dexed by i with i 2 [0,NG�1] (note than python as C and C++ counts the indices in vectors
from 0, in MATLAB the same index range would be 1 to NG).

Of course, the first cell and the last cell have a problem: we do not have the neighbouring
cell outside. This challenge is called boundary condition and it is the worst nightmare any
computational scientist can experience. Boundary conditions are pure distilled evil. An
evil we will avoid with a double trick. First, we use periodic boundary conditions: the left
neighbour of the first cell is the last cells and the right neighbour of the last cell is the first

30 CHAPTER 1. PARTICLE-BASED SIMULATION OF PLASMAS

cell. Second, the potential is defined minus a constant and we use this freedom to set the
potential in the last cell to 0. The number of unknown potentials then is just NG-1. This
tricks works in 1D for periodic boundary conditions, more general boundary conditions in
3D quickly become the aforementioned nightmare.

With these assumptions, the matrix of the discretised Poisson equation is then very sim-
ple, it has -2 on the main diagonal and 1 on the two neighbouring ones.

# Auxiliary vectors

p = np.concatenate([np.arange(N), np.arange(N)]) # Particle indices up to N

Poisson = sparse.spdiags(([1, -2, 1] * np.ones((1, NG-1), dtype=int).T).T, \

[-1, 0, 1], NG-1, NG-1)

Poisson = Poisson.tocsc()

Main Cycle

At this point we have prepared the simulation for the main cycle where the four steps of pic
are followed. First, the position is advanced, then the particles are projected to the grid to
compute the density. With the density, the Poisson equation is solved. The electric field is
computed to obtain the force on the particles and advance the particle velocity.

# Main cycle

for it in xrange(NT+1):

# update particle position xp

xp += vp * DT

# Periodic boundary condition

xp[np.where(xp < 0)] += L

xp[np.where(xp >= L)] -= L

# Project particles->grid

csi = xp/dx

g1 = np.floor(csi - 0.5) # Distance from the centre of the cell

g = np.concatenate((g1, g1+1))

fraz1 = 1 - np.abs(xp/dx - g1 - 0.5)

fraz = np.concatenate((fraz1, 1-fraz1))

g[np.where(g < 0)] += NG

g[np.where(g > NG-1)] -= NG

mat = sparse.csc_matrix((fraz, (p, g)), shape=(N, NG))

rho = Q / dx * mat.toarray().sum(axis=0) + rho_back

# Compute electric field potential

Phi = linalg.spsolve(Poisson, -dx**2 * rho[0:NG-1])

Phi = np.concatenate((Phi,[0]))

# Electric field on the grid

Eg = (np.roll(Phi, 1) - np.roll(Phi, -1)) / (2*dx)
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# interpolation grid->particle and velocity update

vp += mat * QM * Eg * DT

Let us comment the particle steps in each of these phases:

1. Position advancement: When particles are advanced, the possibility exists for the par-
ticles to exit the system. Consistent with the periodicity used above, also particles
exiting form the left re-enter on the right and vice versa.

2. Particle projection: We introduce a logical coordinate defined as x = x/Dx. The par-
ticles and the cells have logical coordinates, where the interpolation function is more
easily defined as Wip = b`(xp � xi). Cell centres have coordinates xi = (i+ 1/2), i 2
[0,NG�1] and particles have xp = x/Dx. We consider the case of particle shapes given
by b-splines of order 0 and interpolation functions, consequently, of order 1:

Wip = b1(xp �xi)⌘

8
<

:

1� |xp �xi|, if : |xp �xi|< 1

0, otherwise
(1.69)

With this choice of interpolation, each particle can only contribute to maximum of two
cells. The choice of making the particle size equal to the cell size means that it is
impossible for a particle to overlap more than 2 cells. Figure 1.8 shows the concept.
The contribution of a particle of finite length to a cell is equal to the fraction of the

Figure 1.8: Particle interpolation in 1D: the contribution of a particle to a cell is proportional
to the length of the interval of overlap with that cell. When the particle shape is a b-spline of
order zero (a case called cloud-in-cell), the particle is subdivided to the cells according to its
overlap.

length of the particle that overlaps that cell. This is computed by first identifying the
leftmost cell using the floor command and then computing the two fractions (one being
1 minus the other since the total contribution is unity).

Once the two fractions are computed the contribution to the charge of a cell is the
fraction times the charge of the particle. Periodic boundary conditions are applied also
to charge projection.

The code in the example uses a matrix notation to project the particle avoiding loops
but a simple loop over the particles would work as well. The matrix ”mat” is equal to
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the interpolation function Wip = W (xp � xi) that indeed has two indexes. The charge
is than the matrix Wip applied to the vector qp:

qi =Wq ⌘ Â
p

Wipqp (1.70)

The matrix notation can in some computer languages produce a faster execution, but
this issue is largely eliminated in the latest version of most languages. The computa-
tional performance of the interpolation steps depends dramatically on the precise style
of code writing, on the language and on the hardware [50, 6, 65, 15].

In alternative to a matrix formulation, a loop over the particles can be used:

qodx = Q / dx

rho = np.zeros(NG)

for i in range(N):

csi = xp[i]/dx

g1 = np.floor(csi - 0.5)

g2 = g1 + 1

fraz1 = 1 - np.abs(csi - g1 - 0.5)

fraz2 = 1.0 - fraz1

rho[j1] = rhoe[j1] + qodx*fraz1

rho[j2] = rhoe[j2] + qodx*fraz2

rho[0] += rho[NG-1]

In both cases the charge in the cell must be divided by Dx to obtain the density.

3. Field solver: In 1D electrostatic there are many alternatives. Some are very sim-
ple [28], but we use here the most general approach that would work also with more
complex boundary conditions and in more dimensions. We use a linear matrix solver
provided by python. The boundary conditions are then imposed (setting the last cell to
0) and the electric field is computed from the potential:

Ei =�fi+1 �fi�1

2Dx
(1.71)

4. Velocity update: The electric field is used to advance the particle position. The same
interpolation method used for the charge is used for the electric field.

Note that we have chosen the position update as our initial step in the cycle but the
starting point is completely arbitrary, the cycle can start at any point. This means also that
logically position and velocity advancement happen in sequence, the last operation of one
cycle being followed by the first of the next.
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Example 2: two-stream instability 
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