I~
=
o

22

2
-,

.
‘ - . e 9
.. ..
- 4 o .\
- 4 o s o O
. y '3
= - - _...-
- -
. . 3
¢
- MR ™
- Tiw

. 5 .
. ® H
. .
w - . .
Y .
-
. -
. L » s *
. - - .
. e L

on to Particl

. .
e
o

L)
T

Ll
i
F
g.
o

IPic3D

Plasma Physics 0 =

Solid Gas | Plasma
Exanggin ’ Erampie :I'Eg:qn:r-ap i iEceniie
lce | Water | Steam | lonized Gas
“zn lzo i ﬂzl “2 L i S
; +2¢”
Cold Warm Hot Hotter
T<0°C B<T<100°C T>100°C T>100,000°C
1510 plectron
Valisl

AT

\
Molecules = Malecules | Molecules lons and
Fixed in freete | Freeto Electrons L
Lattice Move | Move, Large Move 0“ 0,
" Spacing | Indegendently, «—@ <——;\a‘. o
! ; S A

= i
& @\0 « '\/ ;'Oaj’
TN S

. real horse quasi horse

G
:
%Q)U \. \ I/ Quasi Particle Concept
Sl
GAS PLASMA

iIPic3D

Challenge of modelling multiple physical levels m

HPC

From "Elegant Universe" by B. Greene

Spatial scale
Temporal scale

Formation of extragalactic jets i
from black hole accretion disk /ﬁ,’//j

e
Baragalastk /
L=

Neld lnes

Accretion
dmk

IPic3D

A plasma and its models =|1

. ' Single particle level: tracing every
D 0 O ~ / s f single particle and their

interactions:
Ens

Kinetic approach: study the
distribution function (probability of
finding a particle with a given
velocity in a given point at a given

time):
J(x,v,1)

Fluid approach: study local averages
(density, average speed,
temperature,....)

n(x,t),U(x,t),T(x,t)

Motion of charged particles Motion of charged particles
without magnetic field. with magnetic field.

IPic3D

Macro: Fluid Theory

HPC

Wassily Kandinsky: Squares and Concentric Rings

IPic3D

il

Sweet exists by convention,
Bitter by convention,
Colour by convention;
Atoms and void alone exist in

reality.

IPic3D

-1

HPC

Micro: Kinetic Theory

Zheng Yang, Peter Majek, and Ivet Bahar (2009) Allosteric Transitions of Supramolecular Systems Explored by Network
Models: Application to Chaperonin GroEL. PLoS Comput Biol 5(4): e1000360.

iIPic3D

The two .11

approaches:.

s W
EANTEN
- _———— Sy

IPic3D

Fluid Approach
V*E=(p i
VeB=0 %=—nsv-vs
: 4
VxE+@=O < Coupllng Dv
" " =—V-Q+}@+Vx
oE
VXB_goﬂo_a;=ﬂ@—' /
E,B
P,

Maxwell Fluid Equations

IPic3D

PIC Kinetic model

V'E=@ > @_
VeB=0 F .
0B
VXE +—= e ‘
ot
VxB-¢,u,
MaXWCH Newton

Derivation of the
basic PIC algorithm

IPic3D

il

HPC

Summary of Lecture 1: Derivation of the basic PIC
algorithm

Physical Heuristic
derivation

Derivation

IPic3D

Summary of Lecture 1: Derivation of the basic PIC 1
algorithm "1

HPC

Physical Heuristic
derivation

o Q Q
A o 0

Temperature (K)

Q
N

Typical Plasmas

1 | . | |
Magnetic 4 * "= Inertial
confinement i confinement

* =
- -,r- e : _ L i f —
fusion - @ A o) usion
| » -

' | Solar core
,
k. Nahib-’ lightninV"

— Solar wind on sign

/Vz/a

Interstellar space Fluorescenf |.gh1 ’

Avrora Flumes

- ’-ﬁi’) %5&

102 10° 0‘5 102!
Number Density (Charged Particles / m3)

Copyright 1996 Contemp orary Physics Education Project.
Images courtesy of DOE fusion labs, NASA, and Steye Albers.

iIPic3D

&l

HPC

iIPic3D

Examples in nature I11

APPROXIMATE MAGNITUDES
IN SOME TYPICAL PLASMAS

Plasma Type ncm S |T eV Wpe sec ™M Ap em | nAp? |We; secT !
Interstellar gas 1 1 6 x 10* [7x10% |4 x 10%||7 x 107°
Gaseous nebula 10° 1 | 2x10° 20 8 x 10°||6 x 10~2
Solar Corona 107 102 | 2x 107 [2x 10718 x 10° 60
Diffuse hot plasma | 102 | 102 | 6 x 101° |7 x 1072 |4 x 10° 40
Solar atmosphere, 10t 1 6 x 10 |7 x 107" 40 2 x 10°

gas discharge
Warm plasma 1014 10 6 x 10 [2 x 107*|8 x 10 107
Hot plasma 10 | 102 | 6 x 10* |7 x 107*|4 x 10*||4 x 10°
Thermonuclear 101° 10* | 2x 1012 [2 x 10738 x 10°||5 x 10*
plasma
Theta pinch 1016 | 10% | 6 x 102 |7 x 107° |4 x 107 [|3 x 10®
Dense hot plasma 10'® 102 | 6 x 1022 [7x107°%[4 x 107 |[]2 x 101°
Laser Plasma 10%°% [102 | 6 x 10** |7 x 1077 40 |]2 x 10*2

IPic3D

&l

Coupling parameter I

= Plasma Coupling parameter

3 20 . : r ! -
F oC I’lj, D relativistic quantum

= Quantum effects

TeV]

sNeon sign e

= Relativistic effects e ~ -

50

n[part/m™]

IPic3D

Strongly Coupled Systems: -'|1

a thought experiment

Measure

time

Motion of a particle determined by the near neighbor
interactions

IPic3D

Weakly Coupled Systems:
a thought experiment

Motion of a particle determined by the collective
behavior of many others

iIPic3D
Kinetic simulation models ﬂ1

Direct simulation:
Particle-Particle

\/\/\/\/\/ Indirect simulation:

Particle-Mesh

Measure

Measure

Particle — Particle(PP) iPic3D

Molecular Dynamics (MD)

HPC

Measure
<
——
—_

« System of N particles, each interacting with each other. To study the evolution,
discretize the time into small steps with interval 6t
* Advance particles
xpew = x5! + stvgld,
view = vgld + 5tF /m,
where F is summed over all particles

Fp = Z Fpp/.
p’

» Gravitational electrostatic, etc., forces. For example, electrostatic:
F, = pdp’ Xp = Xp'
pp’ — ' '
Arteg|x, — x| |, — x|

* This cycle repeats until needed.
* The number of force computations at each stepis N(NV — 1)/2.
» Treecode algorithm can reduce to O(Nlogh).

* Feasible where plasma approximation is not valid: galaxy mergers, evolution of
early Universe, molecular dynamics, etc..

IPic3D

Numerical modeling: Particle-Particle or N-body approac"m
]

HPC

Barnes-Hut Hierarchical Force-calculation 1
Algorithm ~1

IPic3D

https://www.astro.rug.nl/~weygaert/voidhierarchy.html

o .}‘:4-

'!‘3 :,‘(4,.’.»."%:/

’ 4 A
\‘\,,_s

e |

alies

v 3 '\I\

A AR R
vt o k .7. v
A L%y Ay ‘,,:\'f‘
-l - '

= “":]\\ L"n’r&‘\ -
ey M AN
M A "‘j

~7

Pei Tang, and Yan Xu PNAS 2002;99:16035-16040

iIPic3D

Particle — Mesh (PM)

Particle In Cell (PIC)

Measure

ow can this behaviour be
represented with a
manageable number o
computational agents?

IPic3D

Two finite-sized particles moving closer

— -
&
: e
—~— . ~
point

particle

A, =Debye length

Finite-size particles

Far: behave like point particles

Close (overlap): the area overlapped does
not contribute to the force

At short range the interaction is much weaker

iIPic3D

A ensemble of finite-sized particles ﬂ1

Particle In Cell approach

Using a mesh

y

Particle -> Grid
Xp -> Ng, Jg

Particle mover
Fp-> Xp

Field Solver
Ng, Jg -> Eg, Bg

A

Grid -> Particle
Eg,.Bg->Fp

A

IPic3D

&l

IPic3D

Summary of Lecture 1: Derivation of the basic PIC 1
-1

- ‘

=9 Physical Heuristic derivation

)

HPC

Derivation

Derivation of the Particle-in-Cell (PIC) method iﬁ)
"1

Example of 1D electrostatic

Vlasov equation

Ofs 0fs qsE0fs
6t+vax+ms v

Electric field is given by the Poisson’s equation

0%

09xz =

The net charge density is computed from the distribution function

P00 =) a5 [filx,v, 0o

(‘_

af
X

T -

QO
o
o
Q.
(/)
Q
(7))
©
L
o

Derivation of PIC: numerical representation

The PIC method can be regarded as a finite element approach but with finite
elements that are themselves moving and overlapping. Assume that the
distribution function of each species is given by the superposition of several
elements (called computational particles or superparticles):

fi(x,v,t) = pr(x,v, t).
P

Assign to each computational particle a specific functional form for its
distribution, with a number of free parameters whose time evolution will
determine the numerical solution of the Vlasov equation. Usually it is the
tensor product of the shape in each direction of the phase space:

£, (60, 8) = NpSy (x = x,(8)) Sy (v = v(B)),
where S, and S, are the shape functions.
By definition,

| se(e-g)ag=1.

iIPic3D

&l

iIPic3D

Properties of the Shape functions =|1

A number of properties of the shape functions come from their definition:

1. The support of the shape functions is compact, to describe a small portion of phase
space, (i.e. it is zero outside a small range).

2. Their integral over the domain is unitary:
| seE-gag =1 (1.13)
4

where £ stands for any coordinate or any velocity direction.

3. While not strictly necessary, Occam’s razor suggests to choose symmetric shapes:

Se(6 —6p) =Se(Ep—¢) (1.14)

iIPic3D

Derivation of PIC: shape function choice ﬂ1

* Inthe velocity direction: Dirac’s delta
SU(U — vp) = 5(v — vp).
This way, particles stay close together in phase space for longer time.
* Inspace: b-splines (basic splines). First b-spline is a top-flat function:

1if |x] < 0.5
by (x) = {
0(%) 0 otherwise

The subsequent are given by the recursive formula
bros = | dx'boCr = ¥)ba(x).

* The spatial shape function for PIC:

1 X —X
Sx(x—xp) :A_pb"< A p)

IPic3D

B-Spline shape functions =|1

2 05
1 if|E]<1)2 % 45 4 05 0 05 1 15 2
bo(S) =]

1 | T T T T T T
0 otherwise T
— 0.5
0 L | | |

iIPic3D

Crucial properties of the b-splines ﬂ1

(a) when a b-spline of any order is evaluated on a uniform grid of step 1, the sum over all
points of evaluation is unitary, regardless of the central point £ of the b-spline:

Zbg(§+i) =1, (1.18)

a property of great convenience in particle interpolation;

(b) The integral of b-splines of any order is unitary:
/_ by(E)dE = 1. (1.19)

(c) The Dirac’s delta 6(&) can be regarded as b_(&).

iIPic3D

PIC: equations of motion 1 ﬂ1

fo(z,v,t) = NpSz(z — xp(t))Su(v — vp(t))

* We are interested in evolution equations for x;, and v,,.

* By definition, f, (x,v, t) satisfies Vlasov equation

%_I_Uafp_l_QSEafp _

ot dx mg 0Ov 0

It is non-linear because of electric field which dependson f. =). f,.

* The arbitrary functional form chosen for the superparticles (elements) does
not satisfy exactly the Vlasov equation. The usual procedure of the finite

element method is to require that the moments of the equations be satisfied.

IPic3D

PIC: equations of motion 2

 Use notation(...) = [dx [dv
* MomentO:

a(fp) afp qsE afp
ot \" x| T\ 3w T °
dN.
P
dt !
* Moment 1y:

0 0 EOQ
<fpx>+ vxﬁ +(xL o =0
dt d0x mg Ov

dx
p

v

* Moment1:

o{f,v d EOQ
U)+ ‘uZi + (v o =0
dt 0x mg 0v

dv q
p S
dt _mSEp

iIPic3D

PIC: equations of motion 3

» Itisacrucial advantage of the PIC method that its evolution equations

resemble the same Newton equation as followed by the regular physical
particles.

ANy _
dt
dxp _

[))
dt p

dvp _ 4s
dt mg P
The key difference is that the field is computed as the average over the particles

based on the definition of E,.

iIPic3D

Field Equations

Pi+1 —20i +Pi-1 _
€0 Ag? = —p; (2.24)
where the densities p; are similarly defined as average over the cells:
1 Zit1/2
o= / p(z)dz (2.25)
xi-}-l/? —II—I/Q Ti—1/2

iIPic3D

PIC: field equations 1 (solving Poisson’s)

Discretize electromagnetic field on the rectilinear grid with cell size Ax.

Simplest finite-difference for Poisson’s equation:
. Giv1 —2¢0; + i1
0 =

Ax? P
1 Xit+1/2
pi = | pax.

Formulate the density averaged over a cell with the 0-order b-spline

fxi+1/2p(X)dx _ jo:o be (x — xi)p(x)dx

Xi—1/2 - Ax

Now, the interpolation function is the convolution of the shape function
Sx(x — xp) with the top hat function spanning the cell of the computational
grid.

x. —_— x.
W(xl- — xp) = ij(x — xp)bo (LAx L)
Finally, average cell charge density is

q
Pi = ZA_ZW(xi - xp)r qp = qsNp
p

Interpolation function

W (zi — xp) = / Se(z — zp)bo (“’;;"') (2.28)

1 —x
Se(z — zp) = A—pbl (”J Ap“”’) (2.11)

W(z; — zp) = by (11 — r,,) (2.30)

dp 17
pi = Z A—’;W (= =) (2.29)

iIPic3D

PIC: field equations 2 (computing electric field) ﬂ1

HPC

» Solution of Poisson’s equation gave us electric potential on the grid cells ¢;.
» (Central difference for the electric field gives:

Giv1 — Pi—1
- 2Mx

* The continuum electric field is reconstructed using the assumption that the
field is constant in each cell and equal to its cell-averaged value

E(x) = z E;b, (x A_xxi) :
E, = z E; f by (x A_xxi) Sx(x — xp) :

» Using interpolation function, finally,

E, = Z EW(x; —xp).
[

e Ata particle:

iIPic3D

PIC: moving particles ﬂ1

The equations of motion of superparticles are simple ordinary differential
equations with the same form as the regular Newton equations.

Given the very large number of particles used (billions are now common in

published works), the use of complex schemes may result in prohibitively long
simulations.

A simple and widely used is the leap-frog algorithm based on staggering
velocity and coordinate computation by a half time step:

n+1 _ n+1/2
Xp xp + Atv

JR+3/2 _ nt1)2 +At£Ep(x{}+1)

p p My
1/2 _ o 0
U, + At p(9
— — —— —
—
-~ e
AN ™~
S 2 74 4
n n+1/7 i+ 1 n+ 37 ri47

x,F u x,F u x,F u

iIPic3D

the basic PIC
=l

IPic3D

Developing a simple PIC code .11

JB
o g
V x B=/loeoa—t+NQJ T vy s o ;
e Gk 1Y
EOV'E=p ‘dt/mS/ /.)
i~

Particle mover B
Fp-> Xp -
Particle -> Grid Grid -> Particle
Xp -> Ng, Jg Eg,Bg->Fp
A
Field Solver

Ng, Jg -> Eg, Bg

IPic3D

Summary of the PIC method

Algorithm of the PIC method, electrostatic case in 1D

Particle mover

e (i) The plasma is described by a number of computational particles having
- position x,, velocity v, and each representing a fixed number N, of physical
Fartcle > Grd K@ Grid -> Particle particles.
Xp > Ng. Jg v Eg.Bg>Fp (ii) The equations of motion for the particles are advanced by one time step
\J using,
Field Solver ‘-p;)'—l — .1;)' + Atz,’S’lv’“z
Ng. Jg -> Eg, Bg
on+3/2 = ynt1/2 4 Apde pra

P P —

using the particle electric field from the previous time step.
(iii) The charge densities are computed in each cell using:

q -
pPi = ZA—Z“ (.’I',‘ — J'p)
p

(iv) The Poisson equation is solved:

. Pit1 — 205 + Pi_1
v Ax?
and the electric field E; in each cell is computed:

= —Pi

E. — _Pitl —¥i-1
' 2Azx
(v) From the field known in the cells, the field acting on the particles is com-
puted as

p

Ertt =3 EW(x; — aptt)

which is used in the next cycle
(vi) The cycle restarts.

IPic3D

PIC Code in Python

Move particles

Xp += vp *x DT

Enforce periodicity
xp[np.where(xp < 0)] += L
xp[np.where(xp >= L)] -= L

Project particles—>grid

gl = np.floor(xp/dx - 0.5)

g = np.concatenate((gl, gl1+1))

frazl = 1 - np.abs(xp/dx - g1 - 0.5)
fraz = np.concatenate((frazl, 1-frazl))
glnp.where(g < 0)] += NG

g[np.where(g > NG-1)] -= NG

mat = sparse.csc_matrix((fraz, (p, g)), shape=(N, NG))
rho = Q / dx * mat.toarray().sum(axis=0) + rho_back

Compute electric field potential

Phi = linalg.spsolve(Poisson, -dx**2 % rho[@:NG-1])
Phi = np.concatenate((Phi, [0]))

Electric field on the grid

Eg = (np.roll(Phi, 1) - np.roll(Phi, -1)) / (2xdx)

Project q—>p

pp += matxQMxEg*DT

gamma = (1. + pp**2)*x*0.5
update velocities

vp = pp / gamma

Loading the right tools iPic3D

(Anaconda is a good distribution) ﬂ1

As a first step, some python initialisations are needed.

import numpy as np

import pylab as plt

from scipy import sparse

from scipy.sparse 1import linalg

iIPic3D

Initial setups =|1

We then need to initialise the definition of the simulation, in terms of domain size and
of the grid used to discretise it. Next, the time step is set with the number of cycles to be
run. The next step is to define the plasma density. We use normalised units where the plasma
frequency is set to be unitary. But physical units can be used.

The ion uniform background is set to exactly balance the charge of the particles (that are
all electrons in this simple model).

Simulation parameters
L = 20*np.pi #20*np.pi # Domain size

NG = 80 # Number of grid cells
N = NG * 200 # Number of particles (200 per cell for example)
dx = L / NG # Cell size

DT
NT

0.005 # Time step
50000 # Number of time steps

WP = 1. # Plasma frequency

QM = -1. # Charge/mass ratio

Q = WP*xx2 / (QM*N/L) # rhoO*L/N: charge carried by a single particle
rho_back = -Q*N/L # Background charge density

iIPic3D

Particle initial loading ﬂ1

We then initialise the electrons. We choose a classic problem of two-stream instability [24]
where the initial electrons are subdivided into two equal beams of opposite mean velocity
but equal density and thermal speed.

#Particle initial properties
VO = 0.9 # Stream velocity
VT = 0.0000001 # Thermal speed

perturbation
XP1 =1.0
mode = 1

particles (electrons)

xp = np.linspace(0, L-L/N, N).T # Particle positions

vp = VT * np.random.randn(N) # Particle momentum, initially Maxwellian
pm = np.arange (N)

pm = 1 - 2 % np.mod(pm+1, 2) # Even and odd particles have opposite speed
vp += pm * VO # Momentum + stream velocity

np.random.shuffle(v) # We reshuffle the indices to avoid any bias

Add electron perturbation to excite the desired mode
xp += XP1 x (L/N) * np.sin(2 * np.pi * xp / L * mode)
xp[np.where(xp < 0)] += L

xp[np.where(xp >= L)] -= L

iIPic3D

Example: Two Stream Instability

« Two counter-streaming beams of particles:

fw) = %5(U — V) +%5(v + vg).

* Thedispersion relation

(L1),
2 \(w—kvp)? (w+kvy?)

* |nrelativistic case

wp 1 1
1 - 4 _)=o,
2Y0 \(Yow — kvgyo) (Yow + kvgyo)

iIPic3D

Grid Initialization =I1

In the 1D electrostatic limit, the Maxwell equations reduce to just the Poisson equation:
— 80V2¢ =en; — en, (1.67)

where n; is the uniform background ion density and n, is the electron density projected to
the grid from the particles. The V? operator is discretised as in the simplest textbook finite
difference method [53]:

— &0(@ip1 + Pi1 —2¢1) = (en; — en,)Ax* (1.68)

The potential is computed in the cell centres. The continuum is subdivided in cells in-
dexed by i with i € [0,NG — 1] (note than python as C and C++ counts the indices in vectors
from 0, in MATLAB the same index range would be 1 to NG).

Auxiliary vectors

p = np.concatenate([np.arange(N), np.arange(N)]) # Particle indices up to N

Poisson = sparse.spdiags(([1, -2, 1] * np.ones((1, NG-1), dtype=int).T).T, \
[-1, 0, 1], NG-1, NG-1)

Poisson = Poisson.tocsc()

Poisson solver

The Poisson equation can be discretized in | D using the
classic three-points formula:

Lyr1 —2by 1 + P, p
Ax? g

When casted to matrix form: | _2\0

IPic3D

&l

(tridiagonal matrix)
0

Once the Potential is known, the electric field(- gradient of Phi)
can be calculated by central difference:

E = (I)g‘l'l o (I)Q—l

g 2Ax

Field solver

MATRIX Poisson:

Poisson(gl, g2) =

(Lirl —20i + Qi1 _
0 Az? -

iIPic3D

&l

HPC

(-2 1 0 0)
1 -2 1 0
0 1 -2 0

\ 0 0 | —2)

(2.24)

iIPic3D

Main Cycle =|1

Main cycle

for it in xrange(NT+1):
update particle position xp
xp += vp * DT
Periodic boundary condition
xp [np.where(xp < 0)] += L
xp [np.where(xp >= L)] -= L

Project particles->grid

csi = xp/dx

gl = np.floor(csi - 0.5) # Distance from the centre of the cell
g = np.concatenate((gl, gl+1))

frazl = 1 - np.abs(xp/dx - g1 - 0.5)

fraz = np.concatenate((frazl, 1-frazl))

glnp.where(g < 0)] += NG

g[np.where(g > NG-1)] -= NG

mat = sparse.csc_matrix((fraz, (p, g)), shape=(N, NG))

rho = Q / dx * mat.toarray().sum(axis=0) + rho_back

Compute electric field potential
Phi = linalg.spsolve(Poisson, -dx**2 * rho[0:NG-1])
Phi = np.concatenate((Phi, [0]))

Electric field on the grid
Eg = (np.roll1(Phi, 1) - np.roll(Phi, -1)) / (2*dx)

interpolation grid->particle and velocity update
vp += mat * QM * Eg * DT

IPic3D

Details of implementation - Particle mover

forit=1:NT
Xp=xp+Vvp*DT;

o o * Interpolate particle
Ty =y, + Ate, T informations to grid to
calculate charge density

n+3/2 _ n+1/2 s V(T .)
vy = T A Ey () * calculate the field Eg

i/'bzvp+mat*QM*Eg*DT;
end

IPic3D

&l

Particle projection: We introduce a logical coordinate defined as & = x/Ax. The par-
ticles and the cells have logical coordinates, where the interpolation function is more
easily defined as W;, = by(&, — &;). Cell centres have coordinates & = (i+1/2), i €
[0,NG — 1] and particles have £, = x/Ax. We consider the case of particle shapes given
by b-splines of order 0 and interpolation functions, consequently, of order 1:

1_’§p_§i‘a if : ‘ép_éi‘ <1
Wip = bl(‘gp_éi)

(1.69)
0, otherwise

The code in the example uses a matrix notation to project
p " the particle avoiding loops but a simple loop over the
particle particles would work as well. The matrix "mat” is equal to

grid O
l / | \ I the interpolation function
[T
VVip — W(xp — xi)

that indeed ha two indexes.
The charge is than the matrix Wip applied to the vector gp:

X

X. X.

i i+1

gi =Wq=)Y Wiyqp
P

Interpolation Functions

r—=

W(zi —2p) = / Sz(z — zp)bo (Az

T — T
W(z; — zp) = b+ (: p)
i p Ap

([frazl 1- frazl
0 frazl
mat(p,g) =
frazl 1- frazl
\1 - frazl 0

iIPic3D

il

HPC

) (2.28)

(2.30)
0 0)
- frazl O
0 0
0 frazl,

iIPic3D

Example: Two Stream Instability

« Two counter-streaming beams of particles:

fw) = %5(U — V) +%5(v + vg).

* Thedispersion relation

(L1),
2 \(w—kvp)? (w+kvy?)

* |nrelativistic case

wp 1 1
1 - 4 _)=o,
2Y0 \(Yow — kvgyo) (Yow + kvgyo)

IPic3D
Diagnostics =

3.3 Diagnostics

The great advantage of the PIC method is that it provides quantities
very similar to those provided in a actual plasma experiments: the user
has both information on the distribution of the plasma particles and of
the fields. Below we describe some of the most used diagnostics.

. . . : . 1 A

Typical particle diagnostics are: By — SZ mpv; (3.4)
o phase space plots (z;, vs v,) “p

e more complex phase space density plots where the phase space is

discretized in a grid of cells and the number of particles in each

Furthermore, information can be derived from integral quantities.
Examples are: the total kinetic energy:

the total momentum:

cell is counted to give the distribution function P = Z Mplp 3.5)
e Velocity distribution functions (e.g. histogram of particle counts v
in energy bins) the total energy of the field:
Typical field diagnostics are: 0 2 oo
Jestfield ciag Ep=Az) S-=Ac) L2 (3.6)
o plots of the fields (e.g. E, ¢, p, ...) versus space and/or time = 2 c “

e FFT modes of the field quantities to measure growth rates of
specific modes.

References

« Lapenta, Notes provided:
https://qgithub.com/CmPA/iPic3D/wiki/School-in-Les-
Houches .

 Hockney & Eastwood, Computer simulation using
patrticles

« Birdsall, Plasma physics via computer simulation

