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The lectures

e Self-gravitating systems :
N-body modelling
Poison solvers and schemes for self-gravity

* Hydrodynamics:
Particle-based and grid-based methods
AMR and unstructured mesh

* Gravity-hydro simulations in practice :
Some criteria for « reliable » simulations
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* Recent highlights and outstanding challenges
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Vlassov-Poisson systems

Collisionless Boltzmann equation :

5 :
a—xf(x, p,t) — mVx.®(x)—f(x,p,t) =0

df o

dt ~ ot m
Poisson equation for @ :
Ad(x) = 47Gm / f(x,p,t)d°p
(modulo average density for infinite or periodic system)

Solving gravitational dynamics for any system requires only to
solve this set of two equations... but the CPU and/or memory cost is a real problem



Pure fluid aproach : memory issues

- Discretizing the entire phase-space on a 6D grid

- N”6 resolution elements, each containing at least 1 real
for the phase-space density

- Even for just (256”3)”2 this is >1GB of memory.

- Velocity discretization error propagates (integrated) on real space errors

- The CPU time is not necessariy prohibitive but the memory cost
becomes prohibitive. Cannot fit a 1024”6 on a few thousands of cores !



Pure N-body aproach : CPU issues

- Storing a millions of particles (3D each at each time t) in a
modern computer is not an issue

- Memory cost OK to store the real elements at any given instant

- Problem is the force calculation :

47Gm
a

Ad(x) =

/f(x, p,t)d°p

The Poison integral becomes the direct summation of the pair

interaction forces, each involves the calculation of a distance
XA2+yN2+z702  ~“NA2

Here the CPU cost rapidly becomes prohibitive + hard to
parallelize this problem (long-range P-P interactions).



Particle-mesh methods

- Need to discretize some dimensions to get a reasonable CPU cost
- But not all for memory.

=> Typically, discretize the real space on a 3D grid

+ use particles with real velocities (at the numerical accuracy limit)

=> No prohibitive calculation of particle-particle forces
=> No huge 6D grid, only a 3D grid + millions of particles.
=> No velocity-to-position error propagation (at first order)

Almost all Vlassov-Poisson methods are based on Particle-Mesh schemes



2-body interactions versus long-range forces

Still a (manageable) memory issue :

A galaxy contains 10! stars.

Cannot do Nbody with 10! bodies (particles).

(except maybe pure gravity at super-high resolution, no real science case...)
No way to model all stars of a galaxy cluster, all dark matter particles in a

dark matter halo, all gas clouds and cores in a galaxy, etc...

General consequence :
In astrophysical simulations, Nbody is done with N << real number of elements

Exceptions : star clusters, planetary systems.



2-body interactions versus long-range forces

In astrophysical simulations, Nbody is done with N << real number of elements

In a real galaxy, a star’s movement is dominated by the global galaxy mass,
somewhat influenced by galactic structures (spiral arms etc),
not influenced by the closest neighbours

In a model with 10° particles, the closest neighbour’s force is not so
negligible anymore => change in the long-range/short-range force ratio !

Two-body relaxation timescale
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2-body interactions versus long-range forces

In astrophysical simulations, Nbody is done with N << real number of elements

In a model with 10° particles, the closest neighbour’s force is not so
negligible anymore => change in the long-range/short-range force ratio !

Two-body relaxation timescale

Star cluster 10-100 Myr

Globuler cluster 1-5Gyr Tapody ~ Teross/ 10 N/In(N)

Cross

Galaxy >10Gyr

Timescale required for:

- Orbit scattering by close neighbour

- Relaxation & dynamical evaporation

- Mass segregation (equipartition of energy per particle).



Gravitational softening

Reducing the number of particles N over-estimates the short-range interactions

Solution = gravitational softening

|dea : replace the potential energy 1/r (force 1/r”2)
with a flatter gradient at low r (vanishing forces)

1/r can be replaced with 1/(r+a) or 1/sqrt(rA2+a?2)
a = softening length

First shape prefered to damp forces without cancelling energy gradient
Second shape : force doeesn’t stay about constant below a but falls to zero

Advantage : - often inherent to grid solver
- no singularity at r=0
But : should not be used for low-N systems



Particle Mesh schemes (PM)

Ingredients :
- The mass is distributed in particles, with individual velocities
- A gridis used to solve gravity

Steps :

- Compute the grid density from particles (PIC interpolation)
- Solve Poisson on the grid (Poisson solver)

- Interpolate the force to each particle (dv =-d ®)

- Integrate the particle motion (time integration dx =v)

First step (PIC) is usually done via multi-linear interpolation between
particle positions and grid nodes.

- Quick algorithm

- Accurate enough (see force interpolation later)



Particle-Particle Particle-Mesh schemes (P3M)

The softening length is often linked to the Poisson solver,
and not smaller than the grid cell size.

The softening length can often be too large :
not a formal problem if the true 2body-relaxation timescale is Gyrs,
but lowers the resolution

P3M uses:

- Grid-based gravity on long ranges

- Direct summation on short scales

- A carefully-chosen softening length.



Adaptive Particle-Particle Particle-Mesh schemes (AP3M)

Pro : P3M allows a carefully-chosen softening length for short-range interactions

Cons :

- Resolution jump at boundaries

- In avery heterogeneous system (e.g. cosmology at low redshifts) the PP part
dominates over the PM part (in CPU time). This means very high accuracy but
unfeasible — tends toward the direct particle-particle scheme.

Solution : refine the mesh in regions with clustered particles
=> AP3M : adaptive mesh + PP on short scales (Couchman 1991).

Couchman 1995 AP3M-SPH




« Tree-code » schemes (TPM)

- Spatial decomposition in octs

- Until 1 particle per cell, or a am
ma

: N T HE ]
low number of particle per cell e R T LT

is reached

- The tree of octs is used to
compute forces :

P-P on short distances

P-node on large scales

Barnes & Hut 86



Particle Mesh schemes (PM)

Ingredients :
- The mass is distributed in particles, with individual velocities
- A gridis used to solve gravity

Steps :

- Compute the grid density from particles (PIC interpolation)
- Solve Poisson on the grid (Poisson solver)

- Interpolate the force to each particle (dv =-d ®)

- Integrate the particle motion (time integration dx =v)

First step (PIC) is usually done via multi-linear interpolation between
particle positions and grid nodes.

- Quick algorithm

- Accurate enough (see force interpolation later)



Poisson solvers : FTT scheme

p(r)du(r).

Gravitational potential :  D(x) = — / G
RS [X— 1|

Lt

This is the convolution (in 3D) of the density p(r) and the 1/r function
In practice softening should be applied to the 1/r function : no change

In the Fourier space : T’T)((I)) (k) = TT(]/r) (k) x TT(p) (k)

=> Direct product, complexity ~N

FFT complexity is Nlog(N)
FFT3D => set of FFT1D in each dimension

MPI ? CPU aspects are OK, although non-equal compute times
Non-local : tends to be memory-heavy
Good for vector-computing, GPU...



Poisson solvers : FTT scheme — boundary conditions

FFT assumes a periodic density distribution: useful in cosmology

For non-periodic systems: '

« zero padding » technique

Use a 2Nx2Nx2N grid

Cancel the Green function on

large distances

=> Periodic density still assumed

=> Forces with Fourier images
are cancelled out




Poisson solvers : FTT scheme — boundary conditions

FFT assumes a periodic density distribution: useful in cosmology
For non-periodic systems:

« zero padding » technique (x8)
Or

Use surface masses on the box

limits (faces, edges, corners)
to screen-out the Fourier images

Costly in real space but easy in the
Fourier space (~x1.5)

(James 1977, JCP 25, 71)
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Poisson solvers : Relaxation solvers

Idea : start with an initial guess and converge toward a solution of Poisson Eq.

e Jacobi Method:

‘ 1 B | 1
n2D o7t = 7 (SFy + 081+ i +8%1) — 7pi

Slow convergence (up to ~N? iterations or more)
* Over-relaxation (Gauss-Seidel method):

Force faster convergence by removing a fraction (between 0 and 100%) of the
previous-order solution
Formal convergence for N2 iterations at most, usually faster

* Conjugate Gradient:
Uses mostly local data (MPI...)
Reaches numerical truncation accuracy in ~N iterations
Low sensitivity to the initial guess



Multi-grid schemes for Poison solvers

Perform a few realxation iterations on fine levels first (smoothing the initial guess)

Restrict residuals to the coarse levels

Iterate relaxation algorithm on the coarse grid

Interpolate and correct on the fine grid

®

v v
Level Level

1 iteration per level 2 iterations per level
(“V-cycle”) (“W-cycle")

Various iteration cycles
Convergence quasi independent from the initial guess (Guillet & Teyssier 2011)



Force interpolation

Now we have the gravitational potential on a grid.
Force interpolation should ensure momentum conservation:

- no self force
- pairs of particles undergo opposite forces

Multi-linear interpolation similar

to the Mesh interpolation scheme
ensures zero self-force, on Cartesian
grids.

Interpolation between 8 grid nodes (in 3D)
for each particle gives the gravitational force

Other geometries often have a self-force (depending on the interpolation scheme)
=> self-force can be computed or estimated, then corrected.



Force accuracy

¥/ Firue

_PM 327 AMR 32° + 6 levels
l.OOE- | l.OOE
0.10; 0.10
0.01 0.01
0.(>)l 040 100 10.00 T

r (units of coarse cells) r (units of coarse cells)

(Teyssier 2009)

Force accuracy reaches 1% in 2-3 cells.
Adaptive grids induce changes in the interpolation and softening, below the
intrinsic accuracy.



Time integration

Explicit Euler integrator :
(x,p) ! = (xv)" +dt f((x,v)") where f=(mv,-dd/dx)

Implicit Euler integrator :
(X)) = (xp)" + dt f((xp)"*)

Problems : in simple potentials, a single particle will continuously gain
(respectively loose) gravitationnal potential energy.
Trajectories are non-reservible.

=> These integrators are not simplectic..



Time integration — symplectic integrators

Simplest (Euler-like) symplectic integrator :
(x,p)+! = (xp)" + dt f(x"y")

Second-order integrators :
- leap-frog
yn+32 — ypn+ll2 | | (xn+l) dr

- kick-drift-kick
Slightly longer calculation but matched timesteps for v and x



Particle Mesh schemes (PM) - summary

Ingredients :
- The mass is distributed in particles, with individual velocities
- A gridis used to solve gravity

Steps :

Compute the grid density from particles (PIC interpolation)
Solve Poisson on the grid (Poisson solver)

Interpolate the force to each particle (d,v =-d ®)
Integrate the particle motion (time integration dx =v)

The basic PM loop is now complete... We can move to AMR techniques...



AMR techniques

An AMR structure will usually start from a « coarse level » uniform grid
=> reduce the number of intermediate levels
=> domain decomposition at least on the coarse level grid

Simplest version : patch-based refinement

level 2 > %‘%

level0 —

Recursive time intergration :

S , - coarse+fine levels
““F__r . -fine levels (sub-loops as required)
2 N . - synchronize and re-grid (if needed)
o L———d - iterate all levels again



Patch-based AMR

Reasons for patch-based strategies :
-- Simplicity
-- Lower rate of coarse/fine interpolation in critical zones (if controlled)
-- Suited for vector computing or GPU
-- No need for domain decomposition :
each processor can handle a level, or a patch (esp. if constrained size)

don’t need to have parent/child cells on same CPU

Main drawbacks :
-- memory inefficient, especially if patch size is constrained

-- lack of real domain decomposition can be a drawback (analysis, sub-grid)



Cell-based AMR (tree-based)

Reasons for tree-based strategies :

-- Minimal memory for given refinment requirements

-- Simpler data structure (e.g. oct-tree) once hydro is coded
-- Adapted to any system (patches follow clustering)

-- There is a real domain decomposition (a constraint but also advantages)

Main drawbacks :
-- fluid elements may undergo more refinement/de-refinement
-- communication costs can be higher for some « ideal » geometries

T ’

f4

Example of RAMSES
domain decomposition

-
L

/_
.




AMR Poisson solver

- Relaxation methods can still be used (such as Conjugate Gradient)

- Multi-grid could still be used on any AMR level (esp. if patch-based),
but generally in tree-based schemes the multi-grid becomes inherent
to the AMR structure

Basic approach : « Pandora » scheme. Coarse levels ignore the content of fine levels

Coarse level potential computed independently :
Coarse - using all particles (even those in Fine region)
- applied to Coarse-region particles

Fine : s
Finel level potential is sum of:

- coarse-only potential (computed everywhere
with coarse-only particles)

+ fine-ony potential (Fine region as closed box)

=> applied to Fine-region particles

Always isolated B.C. -- requires simple boundaries
PANDORA code — Villumsen et al. 1989 ApJS (patches, single OCtS..)



AMR Poisson solver

Coarse Coarse

"""""""" 1. Compute Coarse
independently
of refinements
(with any choosen BCs)

Fine

........................................... 2 Interpolate BCS for ﬁne |eve|
: : from Coarse grid result

Fine (+ use coarse potential as guess
: for fine levels)

3. Compute Fine using Adaptive Tree scheme
the Coarse-based BCS - : Kravtsov et al. 1997 Ap.IS (ART COdG)
Miniati & Collela JCP 227 (2007)



AMR Poisson solver with one-way interface

Coarse Coarse

"""""""" 1. Compute Coarse
independently
of refinements
(with any choosen BCs)

Fine

\

Fine

In the original ART-based solvers, all particles (including fine ones) are passed
to the coarse level to compute the coarse density, and the coarse potential

is computed everywhere => extra calculations, the density and potential are
computed twice in the » fine » volume.

Extra MPl communications too.



AMR Poisson solver with two-way interface

Coarse Coarse

"""""""" 1. Compute Coarse
independently
of refinements
(with any choosen BCs)

Fine

\

Fine

Coarse density interpolation and potential calculation performed
only in the « Coarse — Fine volume ».

Use Coarse as a boundary for Fine
But also Fine as an inner boundary for Coarse

Miniati & Collela JCP 227 (2007)



AMR Poisson solver with two-way interface

Coarse Coarse

1. Compute Coarse
independently
of refinements
(with any choosen BCs)

Fine

\

Fine

- Solve A® =p_ on the « C-F » volume only

- Use as Dirichlet+Neuman B.C. at the boundary

- Solve A®p=p on the « F » volume

- Iterate until convergence at both the C-F and F levels.

Miniati & Collela JCP 227 (2007)



Oct-tree structures for AMR (here RAMSES)

1 oct = small group of 2Ndim

Level 1

L

8 associated pointers: //

4

* 1 parent cell

* 6 neighboring parent cells / ’ | / / Level 2

« 8 children octs \

» 2 linked list indices

| , Level 3
Fully threaded tree (Khokhlov 1998) : ’ ; / /
Courtesy R. Teyssier

Any cell can be « leaf » (active) or « split » (inactive).

All levels exist from level O (full box) to the maximal level,
but a minimal refinement level (usually >0) is defined.

Levels can be sub-cycled or not (usually yes, see later CFL condition)



Oct-tree structures for AMR (here RAMSES)

Level 1

1 oct = small group of 2Ndim

L

8 associated pointers: //

* 1 parent cell

* 6 neighboring parent cells / ’ | / / Level 2

« 8 children octs \

4

» 2 linked list indices

e | o aram , Level 3

Courtesy R. Teyssier

Refinement criteria:
-« constrained refinement » : no more than 1 level difference between neighbors

- Physical criteria : mass or number of particles per cell,
physical scale-lengths to resolve, gradients, zoom regions...

- Mathematical smoothing to ensure convex enveloppe



Oct-tree and domain decomposition in MPI

- Space-filling curve (Peano-Hilbert)

- Ghost copies of the locally-essential tree
in the memory of each CPU



Hydrodynamics : particle-based and grid-based

Now adding the gas (continuous fluid) in the system:
Back to the initial questions (Vlassov-Poisson) : particles or mass in grids ?

Mass in grid now has a reasonable memory cost : one single velocity in a given
spatial resolution element => no need for a 6D grid.

Grid-based: One single velocity (+thermal dispersion) in each spatial cell
=> formally correct only for infinitely small cells,

or at least cells smaller than the dissipation scale(s) of the turbulence cascade
= Otherwise gas is very dissipative/viscous or needs to be artificially heated

Particles: Allows a distribution of velocities inside the spatial resolution elements
No formal dissipation of the kinetic energy at the mesh resolution limit
But is this really modelling a continuous fluid ?
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Hydrodynamics : particle-based and grid-based

- Comparison a similar resolution
gazoline - 9PH has been improved

- Is this really relevant at all if the
critical scales (spatial and thermal) are
gadget not resolved in cosmo/galaxy/ISM
simulations in practice ?

- Comparisons on a given computer
can be very different from ideal
comparison of hydro solvers !

enzo

- Most important may be the
achievable spatial resolution, mass
resolution, temperature floor
(i.e. minimal Jeans mass) on a given
computer => code resolution+scaling

=> jt is probably where grids and AMR

Agertz et al., Tasker et al. 2007 win the comparison in practice

flash

art_hydro




Hydrodynamics : particle-based and grid-based

- Comparison a similar resolution
- SPH has been improved

- Is this really relevant at all if the
critical scales (spatial and thermal) are
not resolved in cosmo/galaxy/ISM
simulations in practice ?

GADGET

- Comparisons on a given computer
GADGET can be very different from ideal
comparison of hydro solvers !

- Most important may be the
achievable spatial resolution, mass
resolution, temperature floor
(i.e. minimal Jeans mass) on a given
computer => code resolution+scaling

=> jt is probably where grids and AMR

Keres, Springel et al. win the comparison in practice




Hydrodynamics : particle-based and grid-based

o - [X) ™
log(Z [Mgpe™®])

| 1 ]
- -

Need to resolve the Jeans+ KH instability scales

before arguing how accurately the code handles it !

Renaud Bournaud et al. 2013 RAMSES

Comparison a similar resolution
SPH has been improved

Is this really relevant at all if the
critical scales (spatial and thermal) are
not resolved in cosmo/galaxy/ISM
simulations in practice ?

Comparisons on a given computer
can be very different from ideal
comparison of hydro solvers !

Most important may be the
achievable spatial resolution, mass
resolution, temperature floor

(i.e. minimal Jeans mass) on a given
computer => code resolution+scaling

=> jt is probably where grids and AMR
win the comparison in practice
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AMR Poisson solver

- Relaxation methods can still be used (such as Conjugate Gradient)

- Multi-grid could still be used on any AMR level (esp. if patch-based),
but generally in tree-based schemes the multi-grid becomes inherent
to the AMR structure

Basic approach : « Pandora » scheme. Coarse levels ignore the content of fine levels

Coarse level potential computed independently :
Coarse - using all particles (even those in Fine region)
- applied to Coarse-region particles

Fine : s
Finel level potential is sum of:

- coarse-only potential (computed everywhere
with coarse-only particles)

+ fine-ony potential (Fine region as closed box)

=> applied to Fine-region particles

Always isolated B.C. -- requires simple boundaries
PANDORA code — Villumsen et al. 1989 ApJS (patches, single OCtS..)



AMR Poisson solver

Coarse Coarse

"""""""" 1. Compute Coarse
independently
of refinements
(with any choosen BCs)

Fine

........................................... 2 Interpolate BCS for ﬁne |eve|
: : from Coarse grid result

Fine (+ use coarse potential as guess
: for fine levels)

3. Compute Fine using Adaptive Tree scheme
the Coarse-based BCS - : Kravtsov et al. 1997 Ap.IS (ART COdG)
Miniati & Collela JCP 227 (2007)



AMR Poisson solver with one-way interface

Coarse Coarse

"""""""" 1. Compute Coarse
independently
of refinements
(with any choosen BCs)

Fine

\

Fine

In the original ART-based solvers, all particles (including fine ones) are passed
to the coarse level to compute the coarse density, and the coarse potential

is computed everywhere => extra calculations, the density and potential are
computed twice in the » fine » volume.

Extra MPl communications too.



AMR Poisson solver with two-way interface

Coarse Coarse

"""""""" 1. Compute Coarse
independently
of refinements
(with any choosen BCs)

Fine

\

Fine

Coarse density interpolation and potential calculation performed
only in the « Coarse — Fine volume ».

Use Coarse as a boundary for Fine
But also Fine as an inner boundary for Coarse

Miniati & Collela JCP 227 (2007)



AMR Poisson solver with two-way interface

Coarse Coarse

1. Compute Coarse
independently
of refinements
(with any choosen BCs)

Fine

\

Fine

- Solve A® =p_ on the « C-F » volume only

- Use as Dirichlet+Neuman B.C. at the boundary

- Solve A®p=p on the « F » volume

- Iterate until convergence at both the C-F and F levels.

Miniati & Collela JCP 227 (2007)



Oct-tree and domain decomposition in MPI

- Space-filling curve (Peano-Hilbert)

- Ghost copies of the locally-essential tree
in the memory of each CPU



Hydrodynamics : particle-based and grid-based

Now adding the gas (continuous fluid) in the system:
Back to the initial questions (Vlassov-Poisson) : particles or mass in grids?

Mass in grid now has a reasonable memory cost : one single velocity in a given
spatial resolution element => no need for a 6D grid.

Grid-based: One single velocity (+thermal dispersion) in each spatial cell
=> formally correct only for infinitely small cells,

or at least cells smaller than the dissipation scale(s) of the turbulence cascade
= Otherwise gas is very dissipative/viscous or needs to be artificially heated

Particles: Allows a distribution of velocities inside the spatial resolution elements
No formal dissipation of the kinetic energy at the mesh resolution limit
But is this really modelling a continuous fluid ?




Beyond Vlassov-Poisson : N-body with collisions

- Particles with finite sizes and collisional particle-particle interactions

-« Sticky Particle » schemes, search for collisions between neighbours
The PM grid can be directly used for this.

- Used for the cold turbulent ISM phases when not able to resolve the
injection scale

- Simplest schemes : particles bouncing back with <1 restitution coefficient

- Accurate model of solid particle disks :
planetary systems, planetary rings, silicate-phase proto-planetary disks

- Modeling of silicate bodies interactions (Salo, 1992, 1998) :
Finite-size bodies
Elasticity + friction



Beyond Vlassov-Poisson : N-body with collisions

Proto-lunar disk and Moon accretion
after a giant impact.

Self-gravity (PM) => density wave => transport
Accretion (sitcky part.) at the Roche radius.

1 = t=1,000 = o Jearic,

5 o = o]
0= o oy o 1 n | — 2k,
1 2 3 "1 A A A A I A A A A A
rag) 0 1 2 3

]\’v’.lu I

[Ida et al., Nature, 1997] [Kokubo et al., Icarus, 2000]

Kokubo, Ida et al. 2010



Hydrodynamics : particle-based and grid-based

Now adding the gas (continuous fluid) in the system:
Back to the initial questions (Vlassov-Poisson) : particles or mass in grids?

Mass in grid now has a reasonable memory cost : one single velocity in a given
spatial resolution element => no need for a 6D grid.

Grid-based: One single velocity (+thermal dispersion) in each spatial cell
=> formally correct only for infinitely small cells,

or at least cells smaller than the dissipation scale(s) of the turbulence cascade
= Otherwise gas is very dissipative/viscous or needs to be artificially heated

Particles: Allows a distribution of velocities inside the spatial resolution elements
No formal dissipation of the kinetic energy at the mesh resolution limit
But is this really modelling a continuous fluid ?




Hydrodynamics : CFL condition

Courant number C = At (v, /Ax + v, /Ay + v,/Az)
for the simplest case of a pressure-less system.

Numerical stability requires C</, usually C<1/2

In the case of AMR, if the largest velocities are macroscopic (non
thermal), sub-cycling of the levels ensures the same Courant
number at all levels. In practice sub-cycling should not be used over
more than 6-7 levels for best performance.

Difficulties can arise from the finite size of the coarsest level,
especially with thermal processes at high T:

- High sound speed (for instance gas at >108K)

- High velcities from thermal release in low-density gas (feedback)
=> peuso-isolated systems are more difficult



Hydrodynamics : « Truelove criterion »
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Problems of systems that should be stable, or at least should not fragment (smaller than
their own Jeans length/mass).

Numerical fragmentation if the Jeans length is not resolved with a few (~ 4) resolution elements

Truelove et al. 1997, 1998
Bates & Burkert 1998



Hydrodynamics : « Truelove criterion »

ORI

Problems of systems that should be stable, or at least should not fragment (smaller than
their own Jeans length/mass).
Numerical fragmentation if the Jeans length is not resolved with a few (~ 4) resolution elements

Truelove et al. 1997, 1998
Bates & Burkert 1998



Hydrodynamics : « Truelove criterion »

Mclumpu / Mgau

# Clumps

06

02

T

Truelove

Truelove

1

A /B

The situation is more complex for systems that
should (sometimes) be Jeans-unstable.

Examples : ISM, molecular clouds, galactic disks...
Numerical fragmentation vs. artifical stabilisation ?

Ceverino et al. 2010, 2012



Hydrodynamics : « Truelove criterion »
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£ The situation is more complex for systems that
S should (sometimes) be Jeans-unstable.
* ! . .
st | Examples : ISM, molecular clouds, galactic disks...
Numerical fragmentation vs. artifical stabilisation ?
. :

A /B Ceverino et al. 2010, 2012



Hydrodynamics : Jeans-stability conditions

logo(T [K])

107 107 10° 10? 104 10%

p [em™]

Typical temperature or pressure Floor to keep the Jeans-length resolved
in ISM/galaxy simulations

Finest AMR resolution is 10 pc (left) and 0.1pc (right)

Turbulence rapidly biased to sub-sonic above not-so-high densities (300cm-3 at 10pc)
=> Lack of strong compression above these densities.
= No « molecular » gas below 10pc resolution

Teyssier Chapon & Bournaud 2010, Perret+13, Renaud+14



Hydrodynamics : particle-based and grid-based

- Comparison a similar resolution
gazoline - 9PH has been improved

- Is this really relevant at all if the
critical scales (spatial and thermal) are
gadget not resolved in cosmo/galaxy/ISM
simulations in practice ?

- Comparisons on a given computer
can be very different from ideal
comparison of hydro solvers !

enzo

- Most important may be the
achievable spatial resolution, mass
resolution, temperature floor
(i.e. minimal Jeans mass) on a given
computer => code resolution+scaling

=> jt is probably where grids and AMR

Agertz et al., Tasker et al. 2007 win the comparison in practice

flash

art_hydro




Hydrodynamics : particle-based and grid-based

- Comparison a similar resolution
- SPH has been improved

- Is this really relevant at all if the
critical scales (spatial and thermal) are
not resolved in cosmo/galaxy/ISM
simulations in practice ?

GADGET

- Comparisons on a given computer
GADGET can be very different from ideal
comparison of hydro solvers !

- Most important may be the
achievable spatial resolution, mass
resolution, temperature floor
(i.e. minimal Jeans mass) on a given
computer => code resolution+scaling

=> jt is probably where grids and AMR

Keres, Springel et al. win the comparison in practice




Hydrodynamics : particle-based and grid-based

o - [X) ™
log(Z [Mgpe™®])

| 1 ]
- -

Need to resolve the Jeans+ KH instability scales

before arguing how accurately the code handles it !

Renaud Bournaud et al. 2013 RAMSES

Comparison a similar resolution
SPH has been improved

Is this really relevant at all if the
critical scales (spatial and thermal) are
not resolved in cosmo/galaxy/ISM
simulations in practice ?

Comparisons on a given computer
can be very different from ideal
comparison of hydro solvers !

Most important may be the
achievable spatial resolution, mass
resolution, temperature floor

(i.e. minimal Jeans mass) on a given
computer => code resolution+scaling

=> jt is probably where grids and AMR
win the comparison in practice



Poisson solvers on an oct-tree AMR :
The refined regions do not need to « know » where they are, and how many of them
there are — just use a multi-grid approach applied to any coarse/fine cell encountered
along the space-filling curve.

Coarse Coarse

Fine

\

Fine

- Solve A®_=p_ on the « C-F » volume only

- Use as Dirichlet+Neuman B.C. at the boundary

- Solve A®p=pg on the « F » volume

- lterate until convergence at both the C-F and F levels.



Poisson solvers on an oct-tree AMR :
The refined regions do not need to « know » where they are, and how many of them
there are — just use a multi-grid approach applied to any coarse/fine cell encountered
along the space-filling curve.

Jeans-based heating at high density and energy conservation :
If a pressure floor is added in the Euler equation, the future temperature/energy
are not affected once the density decreases (in the most elegant versions)

LA T T

GY_RHPD " 3E GY_SN_RHPD

log(T/jt [K])
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Poisson solvers on an oct-tree AMR :
The refined regions do not need to « know » where they are, and how many of them
there are — just use a multi-grid approach applied to any coarse/fine cell encountered
along the space-filling curve.

Jeans-based heating at high density and energy conservation :
If a pressure floor is added in the Euler equation, the future temperature/energy
are not affected once the density decreases (in the most elegant versions)

Exercices not done :
2D hydro code in fortran, Godunov scheme, ghost cells for (reflecting) boundaries.

To be parallelized (MPI) along one axis.
=> code in TP_hydro/Mono/src, solution in .MPI/src directory
test with one hot point in a corner of the box.

Key : - processors do not need to know where their physical domain is (no coordinates)
- better to sychronize the MPI send and receive instructions
- buffers for hydro variables work just like boundary conditions.



Sub-grid star formation models

Star formation is known to be Log(mass fraction)
tighly correlated to dense gas (on parsec scale
and larger scales)

I
1 Dense SF-ing

In the case of a turbulent, cold ISM phase,
a large density PDF is produced

The densest gas is converted into stars with 2 0 2 4
a (very) arbitrary scheme. But the regulation is Log (1 /cm?)
the dense gas rate production. dp 1 (ln P 11133)2}

= exp -
dlnx /2702 [ 207
In the ISM gravity takes over turbulent el

pressure at about 1-2x10% cm (Elmegreen2004), 2 ~ In (1 3M2 4
ideally this critical density should be reached ( + / )

without artificial heating (uneasy, resolution of => Naturaﬂy gives a power law for Zgpg - 2o,
a few pc is needed)

Elmegreen 2002, Krumholz 2005,
Renaud et al. 2012, Kraljic et al. 2014



Sub-grid star formation models

- In most simulations the sub-grid model
is based on density and local free-fall time

In each resolution element, 1-5% of gas is
converted into stars per free-fall time

Efficiency 1-5% typically observed in CO clouds
and HCN cores (Mc Kee 2007)

te~1/(Gp)"”

- Other models probably more justified at
resolutions lower than ~5-10pc :

local virial criteria
(Hopkins et al. 2013, Perret Devriendt & Teyssier 2016)

Log(mass fraction)

Dense SF-ing
cores

-2 0 2 4
Log(n /cm3)

dp 1 (Inz — Inx)?
dlnz /27102 D [— 202 }
o ~ In(1+ 3M?/4)

=> Naturally gives a power law for Zqpp - =

gas

Elmegreen 2002, Krumholz 2005,
Renaud et al. 2012, Kraljic et al. 2014



Sub-grid star formation models

rho

VIr

y [kpc]

x [kpc]

Other models probably more justified at
resolutions lower than ~5-10pc :

local virial criteria

(Hopkins et al. 2013, Perret Devriendt & Teyssier 2016)




Coupled SF+Feedback sub-grid models

2

[\
- \\ L
HiZ 1 Full Feedback 3
“ Effective EOS |
100 £ o Jl . .
10F E
1 4 " e —
0.0 0.5 1.0 1.5 2.0

Hopkins et al. 2013

- Denser gas forms stars
and is heated by young stars

- « effective EoS », typically

polytropic raise of T for densities
above ~1cm3

For instance Springel & Hernquist 2005

- Turbulent ISM with Mach>1 phases
- Star formation in cold, dense clouds
- Feedback from clustered star formation in cloudy gas

=> Very different star formation histories

(See also Jeremy Fensch’s poster)



Explicit stellar feedback on galactic scales

Three runs with different feedback processes, all evolved for 80Myr

Supernova Hll+radiation pressure all feedback

Outflow rate rapidly reaches 20-40 Msun/yr = SFR
Supernovae alone don’t do much

In general “feedback” remains largely sub-grid (arbitrary parameters often remain)
Bournaud 2015



Explicit stellar feedback on galactic scales

First simulations with explicit RT from young stars

(G10_SN_RHPD

Rosdahl et al. 2015



Structure of the turbulent ISM
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* Log-normal density PDF :
expected for compressible, isothermal,
supersonic turbulence

* Power-law tail at >10* cm3 :
expected for self-gravitating gas

* Tail contains ~2% of the ISM mass...
sets the dense gas formation rate and SFR.
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Structure of the turbulent ISM

2F
 A=1500pc 2.=150pc A=15pc

L | V
E v
I | TR T T T W L TR S T

1 2
log(k)

Bournaud+1o simulation of M33-mass disk
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Combes et al. 2013 real M33 data

* Kolmogorov-like power spectrum
below the mean Jeans length

=> Consistent with all ISM data.
=> |njection-scale associated to gravity ?



Did you say « feedback » ?

Feedback turned off
/for the last 40 Myr

2k
i A=1500pc 2=150pc A=15pc
1F |
1 2 3
log(k)

* The injection scale matches the most gravitationally-unstable scale
 The power spectrum is identical without feedback

* Feedback maintains the system in a steady state, by returning material
from the « pseudo-dissipation scale » (in fact, the resolution limit)
preventing gas from pilling-up in tiny bullets.



Gravitationnal and hydro instabilities and the turbulent cascade

Self Gravity (including stars)
I—} Spiral Density Waves

5 Shear and density gradients
) Instabilities

““‘

‘
5

~ = = = = =l Regulated collapse

Older clouds

e A specificillustration of the
gravito-hydro cascade and
SFR regulation

* Note resemblence with
« beads-on a string » clouds
and « spurs » emanating
from spiral arms

Renaud, Bournaud, Emsellem et al. 2013



Gravitationnal and hydro instabilities and the turbulent cascade

e Spiral arms and spursin M51
(Schinnerer et al., IRAM/PAWS)

* Direct signature of SFR regulation by
gravito-hydro turbulence

* Feedback-drven regulation would keep

more molecular sites in spiral arms
(Dobbs et al 2014)



ISM turbulence and the « Schmidt-Kennicut law »
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* This ISM turbulence naturally regulates SF (low amount of gas in the high-density structures)

e Kennicutt diagram directly matched :
- low normalization of ‘normal’ star forming regions
- innefficient regime at low densities : lack of cooling, sub-sonic turbulence transition.

* Feedback is not the regulation source, is not the driver of turbulence, it keeps a steady state



ISM turbulence and the « Schmidt-Kennicut law »
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This ISM turbulence naturally regulates SF (low amount of gas in the high-density structures)

Kennicutt diagram directly matched :

- low normalization of ‘normal’ star forming regions
- innefficient regime at low densities : lack of cooling, sub-sonic turbulence transition.

Feedback is not the reqgulation source, is not the driver of turbulence, it keeps a steady state
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ISM turbulence and the « Schmidt-Kennicut law »
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e This ISM turbulence naturally regulates SF (low amount of gas in high-density structures)

* Kennicutt diagram directly matched :

- low normalization of ‘normal’ star forming regions
- innefficient regime at low densities : lack of cooling, sub-sonic turbulence transition.

* Feedback is not the regulation source, is not the driver of turbulence, it keeps a steady state



SFR (Mg yr-1)

Do simulations really resolve the critical scales ?
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» Resolution effects are strong, then become almost negligible at ~5pc resolution,
leaving only fluctuations.

* Gas becomes self-gravitating at ~10*cm3, main structure size ~20-40pc
=> 4-6 resolution elements per cloud size => resolve the turbulent flow compressivity,
at the scale where self-gravity takes over turbulent pressure toward star formation.

300




Starbursts in galaxy collisions
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1-parsec resolution AMR simulation

of a galaxy collision similar to the « Antennae »
(Renaud, Bournaud et al. 2014,15)
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Starbursts in galaxy collisions
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Starbursts in galaxy collisions (b) g
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SFR (Mg yr-1)

Do simulations really resolve the critical scales for star formation ?
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» Resolution effects are strong, then become almost negligible at ~5pc resolution,
leaving only fluctuations.

* Gas becomes self-gravitating at ~10*cm3, main structure size ~20-40pc
=> 4-6 resolution elements per cloud size => resolve the turbulent flow compressivity,
at the scale where self-gravity takes over turbulent pressure toward star formation.
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Do simulations really resolve the critical scales for star formation ?

Various Antennae-like mergers :

* At agiven resolution, great agreement regardless of details of code, feedback, SF
recipes, interaction orbit and galaxy parameters (disk/bulge masses and sizes)

* Inany case, resolution effects much more important until ~5pc is reached
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Comparing to Karl, Naab et al. 2010 (K10) time (Myr)
SPH simulations with ~50pc resolution Comparing to Teyssier et al. 2010 (T10)
and various sub-grid parameters Same code but EoS (fake) cooling and no feedback

Resolution is most important and sub-grid physics never recovers unresolved turbulence!






