
Particle data visualization and ParaView
International School of Computational Astrophysics
Jean M. Favre, CSCS
May 25-27, 2016

Outline

 Intro to ParaView

 Python numpy/VTK integration

 H5Part - Gadget interfaces

 Pause

 Python Calculator/filter

 Rendering and SPH interpolators

Particle Data Visualization and ParaView 2

Objectives

Familiarize ourselves with introductory notions of:

 HDF5 file formatting, h5py syntax

 Numpy array tricks

 ParaView
 selection and views
 Python Calculator
 Programmable Python sources and filters
 General scripting and batch mode use
 vtkSPHInterpolator

Particle Data Visualization and ParaView 3

Other applications for particle-based data

 SPLASH

 IFRIT

 Yt

Particle Data Visualization and ParaView 4

SPLASH: Interactive Visualization Tool for SPH Simulations

 Paper: by Daniel Price.

 D. Price was most likely the first person to state “given that interpolation lies at
the heart of SPH, consistency suggests use of the same interpolation algorithms
as part of the visualization procedure” (2007)

 Taking advantage also of the fact that fluid particles in SPH preserve their
identity, some dedicated visualization procedures can be put in place, which
otherwise, would not be possible with standard visualization tools.

Particle Data Visualization and ParaView 5

http://www.publish.csiro.au/paper/AS07022.htm

IFRIT

 IFrIT is a powerful tool that can be used to visualize 3-dimensional data sets.
IFrIT is written in C++ and is based on the state-of-the-art Visualization ToolKit
(VTK) and, optionally, uses a GUI toolkit Qt.

 IFrIT has its origins (and hence name) in a specialized utility designed to
visualize ionization fronts in cosmological numerical simulations. But IFrIT has
outgrown its origins and now can visualize general data sets as well.

 Traditional VTK-based visualization use a pipeline paradigm for the visualization
process. It enables great flexibility. IFrIT, instead, limits your flexibility somewhat
by giving you only a fixed set of widget controls.

 Another important feature of IFrIT that distinguishes it from most other
visualization tools is that their authors contributed dedicated development
support for displaying particles.

 Yet, very recent additions to VTK (April 2016) probably still need to be integrated.

Particle Data Visualization and ParaView 6

https://sites.google.com/site/ifrithome/

Yt

 Yt is a python package for analyzing and visualizing volumetric, multi-resolution
data from astrophysical simulations, radio telescopes, and a burgeoning
interdisciplinary community…

Particle Data Visualization and ParaView 7

http://yt-project.org/

The ParaView Visualization Application

ParaView: an interactive environment of Visualization modules

A visualization pipeline embodies a dataflow network in which
computation is described as a collection of executable modules.
There are three types of module: sources, filters, and sinks

ParaView, is a graphics-based application, enabling the interactive
setup of Visualization pipelines. The pipelines are made of VTK
objects. They are assembled via a python language interface.

9Particle Data Visualization and ParaView

ParaView: an interactive environment of Visualization modules

ParaView can be used in multiple ways:

 Standalone interactive application

 Client-server (interactive)
 Serial or parallel server

 Server only [parallel]

In all cases, it is driven by a python interface

10Particle Data Visualization and ParaView

Visualization Pipeline: Data Parallelism

 Data parallelism partitions the input data into a set number of pieces, and
replicates the pipeline for each piece.

 Some filters will have to exchange information (e.g. streamlines)

11Particle Data Visualization and ParaView

ParaView/VTK data formats

 ParaView supports gridded and
mesh-less data and has support
for time-dependent results.

 VTK File formats
 What file formats does

ParaView support?

Particle Data Visualization and ParaView 12

http://www.vtk.org/VTK/img/file-formats.pdf
http://www.cmake.org/Wiki/ParaView:FAQ#What_file_formats_does_ParaView_support.3F

ParaView “Data Object Generator”, and Statistics Inspector

Particle Data Visualization and ParaView 13

Internally

 VTK data types and data formats offer all standard grid shapes and data
attributes.

 Custom formats readers can be added but a thorough knowledge of internal data
structures is required.

 Node-base (point-based) data is stored in a Python object called PointData.
Likewise for CellData, or FieldData.

 A reader interface can be prototyped in python using the Python Programmable
Source

Particle Data Visualization and ParaView 14

HDF5

HDF5 is a data model, library, and file format for storing and managing data. It
supports an unlimited variety of datatypes, and is designed for flexible and efficient
I/O and for high volume and complex data. HDF5 is portable and is extensible,
allowing applications to evolve in their use of HDF5. The HDF5 Technology suite
includes tools and applications for managing, manipulating, viewing, and analyzing
data in the HDF5 format

We will look at two examples (conventions of usage) to familiarize ourselves with
basic concepts of HDF5

 H5Part
 GADGET

Particle Data Visualization and ParaView 15

https://www.hdfgroup.org/HDF5/Tutor/introductory.html

H5Part: an HDF5-based SPH file format
h5ls -r particles00509.h5part

/ Group
/Step#0 Group
/Step#0/x Dataset {23989}
/Step#0/y Dataset {23989}
/Step#0/z Dataset {23989}
/Step#0/density Dataset {23989}
/Step#0/electron\ fraction Dataset {23989}
/Step#0/gravitational\ potential Dataset {23989}
/Step#0/id Dataset {23989}
/Step#0/specific\ internal\ energy Dataset {23989}
/Step#0/vel_x Dataset {23989}
/Step#0/vel_y Dataset {23989}
/Step#0/vel_z Dataset {23989}

Particle Data Visualization and ParaView 16

Some tools:

h5ls
hdfview
h5dump

/

Step#0

coords_x coords_y coords_z id density

an HDF5 group
Containing
multiple
datasets

 H5Part is a usage convention to store
particles datasets in the HDF5 format

 Using h5py, we have a
straightforward interface to create
simple files.

A minimal set of python source code to
create an H5Part file
given, x, y, z, id as numpy arrays of shape (N,)

import h5py
file = h5py.File(“particles.h5part”,”w”)
g = file.create_group(“Step#0”)
d1 = g.create_dataset(“x”,data=x[:], dtype=‘f’)
d2 = g.create_dataset(“y”,data=y[:], dtype=‘f’)
d3 = g.create_dataset(“z”,data=z[:], dtype=‘f’)
d4 = g.create_dataset(“id”,data=id[:], dtype=‘f’)
file.close()

Particle Data Visualization and ParaView 17

H5Part file format

import h5py

file = h5py.File("particles00509.h5part")

grp = file['Step#0']

gp = grp["gravitational potential"][:]

ef = grp["electron fraction"][:]

http://docs.h5py.org/en/latest/

“file” is a python dictionary

file.keys() return [‘Step#0’]

grp.keys() returns

['x', 'y', 'z', 'density','electron fraction',
'gravitational potential', 'id', 'specific
internal energy', 'vel_x','vel_y', 'vel_z‘]

Particle Data Visualization and ParaView 18

Reading back the data

http://docs.h5py.org/en/latest/

GADGET: an HDF5-based SPH file format

Particle Data Visualization and ParaView 19

How to read H5Part or Gadget data in ParaView

 H5Part is a C++ compiled plugin

 A prototype Gadget interface is available, written in Python. I will be very glad to
share my source code with you. Send me email: jfavre@cscs.ch

 The Python Gadget interface can be used as an example of other I/O interfaces
written in Python with h5py.

Particle Data Visualization and ParaView 20

mailto:jfavre@cscs.ch

 23989 particles with Id, 3 components
of velocity, position, «electron
fraction», ...

 Can be viewed as a cloud of
Gaussian Points, with a ParaView-
specific plugin for GPU-rendering

Particle Data Visualization and ParaView 21

H5Part Input dataset used in the next slides

We’ll start with simple examples of usage of
matplotlib

Then, we’ll go to ParaView and present

 Visual selections/filtering

 Numerical selections/filtering

Particle Data Visualization and ParaView 22

3D points and beyond

Matplotlib introductory tutorial at scipy-lectures.github.io

 Matplotlib is the de-facto standard for 2D plotting in the Python world

Particle Data Visualization and ParaView 23

http://scipy-lectures.github.io/intro/matplotlib/matplotlib.html

 With a very simple python console,
one can replicate the standard scatter
plot of SPLASH or IFRIT

 Read the data with h5py into numpy
arrays

import matplotlib.pyplot as plt

import h5py

file = h5py.File("particles00509.h5part")

gp = file['Step#0']["gravitational
potential"][:]

ef = file['Step#0']["electron fraction"][:]

plt.subplots_adjust(hspace=0.5)

Particle Data Visualization and ParaView 24

Matplotlib minimal example

/

Step#0

Gravitational
potential

Electron
fraction density

plt.subplot(122)

plt.set_xlabel("electron fraction")

plt.set_ylabel("gravitational potential")

plt.scatter(ef, gp)

plt.show()

Particle Data Visualization and ParaView 25

Matplotlib: scatter plot

hexbin is an axes method or pyplot
function that is essentially a pcolor of a
2-D histogram with hexagonal cells. It
can be much more informative than a
scatter plot

plt.hexbin(ef, gp, gridsize=50, bins='log')

plt.show()

Particle Data Visualization and ParaView 26

Matplotlib: hexagonal binning

 Matplotlib commands can actually be
used directly within a dedicated View
Window of ParaView.

 Mix 3D graphics and 2D plotting.

 See page 73 of the User manual

Particle Data Visualization and ParaView 27

ParaView Python View

def setup_data(view):
numVisibleObjects =

view.GetNumberOfVisibleDataObjects()
for i in xrange(numVisibleObjects):
dataObject =

view.GetVisibleDataObjectForSetup(i)
if dataObject:
pd = dataObject.GetPointData()
desiredArrays = ["electron fraction",

"gravitational potential"]
for arrayName in desiredArrays:
view.SetAttributeArrayStatus(i,

vtkDataObject.POINT, arrayName, 1)

def render(view, width, height):
figure = Figure()

ax1 = figure.add_subplot(1,1,1)

numVisibleObjects =
view.GetNumberOfVisibleDataObjects()

for i in xrange(numVisibleObjects):

dataObject =
view.GetVisibleDataObjectForRendering(i)

if dataObject:

pd = dataObject.GetPointData()

ef = pd.GetArray("electron fraction")

gp = pd.GetArray("gravitational potential")

npef = numpy_support.vtk_to_numpy(ef)

npgp = numpy_support.vtk_to_numpy(gp)

ax1.scatter(npef, npgp)

Particle Data Visualization and ParaView 28

ParaView’s Python View

 Visual (point and click)
 Numerical
 We will need introductory notions

of numpy

Particle Data Visualization and ParaView 29

Selections / filtering

Particle selection via interactive viewing and mouse selection

Particle Data Visualization and ParaView 30

Particle Data Visualization and ParaView 31

Spreadsheet View The Spreadsheet view enables sorting,
and selection.

All point-and-click selections in ParaView
are synchronized in all views

Particle Data Visualization and ParaView 32

Parallel Coordinates View Parallel coordinates offer a column-wise
display of the frequency distribution of
data, and enables a multi-mask selection

Particle Data Visualization and ParaView 33

Plot Matrix View A diagonal matrix of plots showing
correlation between all individual scalar
fields

Particle selection via numpy array handling

Particle Data Visualization and ParaView 34

Numpy data arrays

Numpy provides an N-dimensional array type, the ndarray, which describes a
collection of “items” of the same type. The items can be indexed using for example
3 integers (i.e. a[start:end:step])

http://scipy-lectures.github.io/intro/numpy/index.html

>>> import numpy as np
>>> a = np.array([0, 1, 2, 3])
>>> a
array([0, 1, 2, 3])

>>> a = np.arange(10)
>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

>>> a[2:9:3]
array([2, 5, 8])

35Particle Data Visualization and ParaView

http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html#arrays-ndarray
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#arrays-indexing
http://scipy-lectures.github.io/intro/numpy/index.html

Numpy data arrays

>>> momentum = np.array(([0,1,2], [3,4,5], [6,7,8], [9,10,11]))

>>> momentum.shape
(4, 3)
>>> momentum[:, 0] # reads the 0-th component
array([0, 3, 6, 9])
>>> momentum[:, 1] # reads the 1-st component
array([1, 4, 7, 10])
>>> momentum[:, 2] # reads the 2-nd component
array([2, 5, 8, 11])

36Particle Data Visualization and ParaView

xyz = np.array([
[0., 0., 0.],
[1., 0., 0.],
[2., 0., 0.],
[0., 1., 0.],
[1., 1., 0.],
[2., 1., 0.],
[0., 0., 2.],
[1., 0., 2.],
[2., 0., 2.],
[0., 2., 2.]

])

coord_z = xyz[:,2]

array([0., 0., 0., 0., 0., 0., 2., 2., 2., 2.])

coord_z < 2

array([True, True, True, True, True, True,
False, False, False, False], dtype=bool)

Particle Data Visualization and ParaView 37

Numpy array selection

xyz[coord_z < 2]

array([[0., 0., 0.],

[1., 0., 0.],

[2., 0., 0.],

[0., 1., 0.],

[1., 1., 0.],

[2., 1., 0.]])

np.where(coord_z < 2)

array([0, 1, 2, 3, 4, 5])

xyz[coord_z >= 2]

array([[0., 0., 2.],

[1., 0., 2.],

[2., 0., 2.],

[0., 2., 2.]])

np.where(coord_z >= 2)

array([6, 7, 8, 9])

Particle Data Visualization and ParaView 38

Numpy array selection

import h5py
import numpy as np
file = h5py.File("particles00509.h5part", "r")

ef = file['Step#0']['electron fraction'][:]
coord_z = file['Step#0']['z'][:]
mask1 = ef < .1
mask2 = coord_z < 0
filtering = np.logical_and(mask1, mask2)
invert the selection by np.invert(filtering)
indices = np.where(filtering)

Create Boolean masks, such as

 “ef < .1” are all particles where
“electron fraction” is < .1

 “coord_z < 0” are all particles whose
Z coordinate is negative

 Apply as many Boolean combinations
of masks using AND. OR,..

Particle Data Visualization and ParaView 39

Numpy array selection

Numpy array selection is done in a Python Programmable Source/Filter

1. Define an output dataset type,

2. Write a python initialization script [optional]

3. Write the main python script

Particle Data Visualization and ParaView 40

VTK Data Objects and numpy

VTK Data objects are scientific datasets such rectilinear grids or finite elements.
These datasets are formed of smaller building blocks: mesh (topology and
geometry) and attributes.

In general, a mesh consists of vertices (points) and cells (elements, zones). Cells
are used to discretize a region and can have various types such a vertex, lines,
tetrahedra, hexahedra etc.

Warning! VTK has its own internal storage conventions.

ParaView’s Programmable Filter enables the transparent exchange of numpy
arrays to VTK

41Particle Data Visualization and ParaView

 Python Calculator is simple
 Pages 100-104 of the manual

 Python ProgrammableSource and Filters are more involved
 Pages 159-169 of the manual

Particle Data Visualization and ParaView 46

Can have multiple inputs

“input” and “output” are predefined names

Each of them is accessed with an index, as in

i=0, inputs[i]

inputs[i].Points # gives access to a numpy array of coordinates (x,y,z)

inputs[i].PointData # gives access to a dictionary of numpy arrays of data attributes
stored at the nodes

See also inputs[i].CellData, inputs[i].FieldData

Particle Data Visualization and ParaView 47

ParaView Programmable Filter and Python Calculator basics

Syntax: make_vector(vx, vy, vz)

 vx = inputs[0].PointData[‘x-velocity’]

 vy = inputs[0].PointData[‘y-velocity’]

 vz = inputs[0].PointData[‘z-velocity’]

 make_vector(vx, vy, vz)

Displayed, using Glyphs

Particle Data Visualization and ParaView 48

The velocity vector is assembled wit the Python Calculator

Implementation:

The calculator automatically “copies” (via reference counting), the mesh and the
existing data arrays.

We simply need to append the new derived field array via a numpy expression

Example:

(inputs[0].FieldData[“gamma”] - 1.0) * \

inputs[0]. PointData["density"] * inputs[0].PointData["thermal_energy"]

Particle Data Visualization and ParaView 49

Calculate a simple derived field

 Used to calculate non trivial derived fields

 Used to do selection

 Runs, in parallel, on the data server side of ParaView

Particle Data Visualization and ParaView 50

ParaView Python Programmable Filter

eg: Calculate radial velocity

input = inputs[0]

bv = input.FieldData["bulk_velocity"]

if bv is dsa.NoneArray:

bv = np.zeros(3)

xv = input.PointData["Velocities"][:,0] - bv[0]

yv = input.PointData["Velocities"][:,1] - bv[1]

zv = input.PointData["Velocities"][:,2] - bv[2]

Particle Data Visualization and ParaView 51

Calculate a more involved derived field

xyz = input.Points

bbox = np.array([

np.min(xyz[:,0]), np.max(xyz[:,0]),

np.min(xyz[:,1]), np.max(xyz[:,1]),

np.min(xyz[:,2]), np.max(xyz[:,2])])

center = np.array([

(bbox[1]-bbox[0])*0.5,

(bbox[3]-bbox[2])*0.5,

(bbox[5]-bbox[4])*0.5])

x_hat = xyz[:,0] - center[0]

y_hat = xyz[:,1] - center[1]

z_hat = xyz[:,2] - center[2]

r = np.sqrt(x_hat*x_hat+y_hat*y_hat+z_hat*z_hat)

x_hat /= r

y_hat /= r

z_hat /= r

output.PointData.append(xv*x_hat + yv*y_hat + zv*z_hat, "radial velocity")

Particle Data Visualization and ParaView 52

Calculate radial velocity

coords_z = inputs[0].Points[:,2]

data = inputs[0].PointData["data"]

filtering = np.logical_and(data < .5, coord_z < 2)

indices = np.where(filtering)

output.Points = inputs[0].Points[indices]

output.PointData.append(data[indices], "data2")

Particle Data Visualization and ParaView 53

ParaView Programmable Filter to do selection

Particle Data Visualization and ParaView 55

SPH Interpolators (New as of April 2016)

 Added in VTK in April 2016

 Will be released with ParaView 5.1

 The interpolators are available as a
special category of Filters, providing
the three basic sampling objects (line,
slice, grid)

 The Point Sampling is using threaded
approaches (vtkSMPTools) which is
typically much faster than any other
point locators and is critical to the
speed of the SPH operations.

 [kudos to Will Schroeder at Kitware]
Particle Data Visualization and ParaView 56

vtkSPHInterpolator, vtkSPH*Kernel

 Use all particles within a cut-off
sphere with a fixed kernel size /
specified smoothing length h (called
spatial step in ParaView). The cutoff
distance (sphere around an
interpolated point) is a function of the
SPH kernel. A quintic kernel has
cutoff distance 3*h.

 The current implementation uses a
gather method. For each point to be
interpolated, the basis neighbors
around the point are retrieved. The
provided kernel is then invoked to
perform the interpolation.

Particle Data Visualization and ParaView 57

vtkSPHInterpolator, vtkSPHQuinticKernel

from vtk import vtkPlaneSource,
vtkSPHInterpolator, vtkSPHQuinticKernel

center = inputs[0].GetCenter()
bounds = inputs[0].GetBounds()
x_avg = (bounds[1]+bounds[0])*0.5
plane = vtkPlaneSource()
plane.SetResolution(800, 800)
plane.SetOrigin(x_avg,bounds[2],bounds[4])
plane.SetPoint1(x_avg,bounds[3],bounds[4])
plane.SetPoint2(x_avg,bounds[2],bounds[5])
plane.SetCenter(center)
plane.SetNormal(1,0,0)
plane.Update()

sphKernel = vtkSPHQuinticKernel()
sphKernel.SetSpatialStep(.01)

interpolator = vtkSPHInterpolator()
interpolator.SetInputConnection(plane.GetOutputPort())
interpolator.SetSourceData(inputs[0].VTKObject)
interpolator.SetKernel(sphKernel)
interpolator.SetDensityArrayName("Density")
interpolator.SetMassArrayName("Mass")
interpolator.Update()

output.ShallowCopy(interpolator.GetOutput())

Particle Data Visualization and ParaView 58

Can use a Progr. Filter to create a specific sampling geometry

 3D planar cut

 3D sub-volume

 High-resolution line probe

Particle Data Visualization and ParaView 59

The ParaView GUI offers “standard” sampling geometries

 The plane is a VTKPolyData and can
be contoured

Particle Data Visualization and ParaView 60

Data on a plane can be contoured

 The vtkSPHInterpolator and the
vtkGaussianSplatter can be multi-
threaded. Using Intel Threading
Building Blocks (TBB) or other non-
sequential type may improve
performance significantly.

 On my laptop with 8-core, I have an
6x speedup, using Intel Threading
Building Blocks (TBB).

Particle Data Visualization and ParaView 62

The volume (clipped), can be iso-contoured

 To get a decent rendering, I interpolated my
Gadget data on a small box inside the overall
bounding box.

 Because I only had 56 millions particles, it did
not make much sense to go to a high
resolution volume.

example run-times (laptop 8 cores)

 56 millions particles resampled in 400^3 grid
in 64 seconds using a QuinticKernel.

Particle Data Visualization and ParaView 63

“Volume rendering” can also be done

 We have taken a brief tour of ParaView with
the emphasis on particle handing.

 We have given examples of data filtering in
straight numpy form, and we’ve seen how the
same syntax can be used (with a bit of
wrapper code) from within ParaView.

 We’ve seen how the new SPH interpolator
objects can be used.

 Thanks to Ali Rahmati, U of Zurich for the
Gadget dataset.

 Exercises:

 Create h5py data

 Use the Python calculator

 Use numpy array masks for filtering

 Practice with SPH interpolator

 Work with the Gadget source code reader

 AMR in ParaView

Particle Data Visualization and ParaView 64

Summary

Thank you for your attention.

	Particle data visualization and ParaView
	Outline
	Objectives
	Other applications for particle-based data
	SPLASH: Interactive Visualization Tool for SPH Simulations
	IFRIT
	Yt
	The ParaView Visualization Application
	ParaView: an interactive environment of Visualization modules
	ParaView: an interactive environment of Visualization modules
	Visualization Pipeline: Data Parallelism
	ParaView/VTK data formats
	ParaView “Data Object Generator”, and Statistics Inspector
	Internally
	HDF5
	H5Part: an HDF5-based SPH file format
	H5Part file format
	Reading back the data
	GADGET: an HDF5-based SPH file format
	How to read H5Part or Gadget data in ParaView
	H5Part Input dataset used in the next slides
	3D points and beyond
	Matplotlib introductory tutorial at scipy-lectures.github.io
	Matplotlib minimal example
	Matplotlib: scatter plot
	Matplotlib: hexagonal binning
	ParaView Python View
	ParaView’s Python View
	Selections / filtering
	Particle selection via interactive viewing and mouse selection
	Spreadsheet View
	Parallel Coordinates View
	Plot Matrix View
	Particle selection via numpy array handling
	Numpy data arrays
	Numpy data arrays
	Numpy array selection
	Numpy array selection
	Numpy array selection
	Numpy array selection is done in a Python Programmable Source/Filter
	VTK Data Objects and numpy
	Slide Number 46
	ParaView Programmable Filter and Python Calculator basics
	The velocity vector is assembled wit the Python Calculator
	Calculate a simple derived field
	ParaView Python Programmable Filter
	Calculate a more involved derived field
	Calculate radial velocity
	ParaView Programmable Filter to do selection
	SPH Interpolators (New as of April 2016)
	vtkSPHInterpolator, vtkSPH*Kernel
	vtkSPHInterpolator, vtkSPHQuinticKernel
	Can use a Progr. Filter to create a specific sampling geometry
	The ParaView GUI offers “standard” sampling geometries
	Data on a plane can be contoured
	The volume (clipped), can be iso-contoured
	“Volume rendering” can also be done
	Summary
	Thank you for your attention.

