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README File: RIEMANN Code for Astrophysical MHD at High Order 

Written by Dinshaw S. Balsara (dbalsara@nd.edu) 

 

Introduction 

 This is the README Document for the high order accurate RIEMANN code for non-

relativistic MHD by Dinshaw S. Balsara. The name celebrates the seminal contributions by the 

mathematician Bernhard Riemann to the theory of hyperbolic PDEs (Riemann 1860). Though 

second order for the sake of simplicity, the code exemplifies many frontline algorithmic ideas. The 

same algorithmic ideas are readily extended in our higher order codes. For pedagogic reasons, it 

might help to start with a 2nd order code and move up to a higher order code that follows the same 

floor-plan. In fact, this README document for the higher order code very closely parallels the 

README document for the 2nd order code because we wish to emphasize the similarity. The 

algorithmic ideas will be detailed below. The code is organized as a set of few Fortran subroutines, 

each of which does a functional task. 

 The code is based on the philosophy that simplicity, taken to its limit, becomes elegance. 

Astrophysical codes are very easy to understand if one takes an algorithms-first approach, because 

most such codes are based on a very well-known algorithmic philosophy. Unfortunately, the trend 

in astrophysics is to start with a very large and complex code and treat it like a black-box which 

one tries to understand “from the outside-in”. This can become challenging. The present code is 

best understood “from the inside-out”; i.e., as an instantiation of a certain algorithmic philosophy. 

To help in that process, the reader is invited to download and learn from a set of lectures that are 

freely available on the web. Please see http://www.nd.edu/~dbalsara/Numerical-PDE-Course. We 

do request that using the code, or any part thereof, should result in citations to the original papers 

(as is customary in good scientific practice). 

 The RIEMANN code is self-documenting – In general, most types of information that you 

need will be documented right in the code and right where you need it. The headers of most 

subroutines describe in great detail the algorithms that are contained in that subroutine. Even so, 

the user needs some basic orientation to get started. For that reason, the next several sections 
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describe the following pieces of information. Section I describes the algorithmic structure of the 

code. Section II deals with making a quick start by running your first simulation and visualizing 

it. Section III describes the file structure and lists the subroutines in each of the files along with 

information on what they do. Section IV catalogues the variables that hold the main simulation 

data. Section V describes the structure of the main code and explains how one should set up an 

application and run it. Papers that have been referenced in this readme file are also listed in detail 

in the references section. 

Good Luck, and Happy Computing! 

 

I) Algorithmic Structure of the Code 

 

 The present code is a higher order Godunov code (Godunov 1959). The code is based on a 

predictor-corrector philosophy. Such a philosophy for the time-evolution of hyperbolic systems 

was first initiated in van Leer (1977, 1979), Colella & Woodward (1984), Colella (1985) at second 

order. That algorithmic outlook has now been polished and made available at all orders via Harten 

et al. (1986), Jiang & Shu (1996), Balsara & Shu (2000), Dumbser et al. (2008), Balsara et al. 
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(2009, 2013). Let us very, very briefly explore the algorithmic content that goes into such a code. 

As you read the subsequent paragraphs, please keep glancing at Fig. 1 from time to time. 

 The first step is to make a TVD (Harten 1983) or PPM (Colella & Woodward 1984, Colella 

& Sekora 2008, McCorquodale & Colella 2011) or WENO (Jiang & Shu 1996, Balsara & Shu 

2000, Dumbser & Käser 2006, Balsara et al. 2009) spatial reconstruction. (Please note that in 

order to have a meaningful reconstruction at the boundaries of the mesh, one has to apply boundary 

conditions before the reconstruction step. But the kinds of boundary conditions that one chooses 

are limited only by the computationalist’s creativity.) In simple terms, spatial reconstruction just 

means endowing some reasonable sub-structure to the slab of fluid within a zone. This substructure 

is evaluated at a given zone by analyzing flow variables in its neighboring zones. TVD (Total 

Variation Diminishing) reconstructions yield second order accuracy. PPM (Piecewise Parabolic 

Method) usually includes several ingredients of third order accuracy. WENO (Weighted 

Essentially Non Oscillatory) reconstruction can provide arbitrary amounts of spatial accuracy, 

provided the stencil is suitably large. But the basic task of reconstruction (also known as limiting) 

is to make a non-oscillatory profile within each zone that is as high order accurate as possible. The 

non-oscillatory profile endows sub-structure to the slab of fluid within a zone without introducing 

new, spurious extrema. In this code, TVD, PPM and WENO reconstruction strategies have been 

incorporated. WENO and PPM are supported as exemplars of third order schemes. Since our 

reconstruction is finite volume-based, cross terms from Balsara et al. (2009) have to be included 

in the reconstruction to make the PPM truly third order accurate. All WENO reconstructions 

include such cross terms and are structured to meet their designed order of accuracy. A fourth 

order WENO scheme is also provided. 

 Having worked hard to endow the slabs of fluid with a meaningful internal sub-structure, 

one desires to know how the PDE system will evolve within a zone for a small amount of time. 

This is the famous Cauchy problem for a hyperbolic PDE which says, in pedestrian terms, that 

given a smooth enough initial conditions for a PDE in space we can always evolve it for some 

interval in time. Observe from the formal structure of a hyperbolic PDE -- ( ) 0t xU F U∂ + ∂ =  -- 

that if the spatial variation is known, the temporal evolution can be predicted, at least for a small 

amount of time. This “evolution-in-the-small” is what goes on in the predictor step. I.e., since we 

know the spatial gradients of a flow variable, via spatial reconstruction within a zone, we 
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understand that this will also provoke a temporal evolution of the flow variables. This is the 

predictor step. Ideally, we want the time-accuracy of the predictor step to match the spatial 

accuracy of the reconstruction. At second order, this is easily done. At third and higher orders, this 

is a more sophisticated undertaking. A formal way of doing this, which always works at all orders, 

is given by the ADER timestepping strategy (Dumbser et al. 2008, Balsara et al. 2009, 2013). 

ADER stands for Arbitrary DERivatives in space and time. Basically, we are taking the spatially 

reconstructed solution within a zone and evolving it within the same zone in space-time.  

 For the sake of historical accuracy, it is worth mentioning that early ADER schemes were 

based on the generalized Riemann problem (Titarev & Toro 2002, 2005, Toro & Titarev 2002). 

But that construction proved to be unwieldy, giving rise to the more modern formulations 

described in the previous paragraphs. 

 Ultimately, the slabs of fluid need to interact with one another. This is needed if we have 

to work out the flux of fluid that flows from one zone into the neighboring zone. The numerically 

correct fluxes have to incorporate the physically consistent direction in which the flow occurs, and 

that task falls to the Riemann solver. (Picking out the right direction from which the “wind” is 

blowing is known as upwinding; and this is what the Riemann solver does for us.) The one-

dimensional Riemann solver sits at the zone boundary between two zones and uses the states from 

either side of the zone boundary. One can think of the one-dimensional Riemann solver as being 

just a machine that takes in two states (one from either side of a zone boundary) and produces a 

properly upwinded numerical flux. For very large systems, like MHD, it is very inefficient to use 

an exact Riemann solver. So one uses an approximate Riemann solver. Numerous good one-

dimensional Riemann solvers have been designed for MHD. An incomplete list follows. There are 

linearized Riemann solvers for MHD (Brio & Wu 1988, Roe & Balsara 1996, Cargo & Gallice 

1997, Balsara 1998a,b). Linearized Riemann solvers do not have a positivity property. I.e., the 

resolved state, from which the numerical flux is calculated, may not have positive density and 

pressure. HLL Riemann solvers have this positivity property. The HLL Riemann solver can be 

quite dissipative, and this has spawned several variants of the HLL Riemann solver that try to 

reduce the dissipation. Consequently, we also have HLLC Riemann solvers for MHD (Gurski 

2005, Li 2006) and HLLD Riemann solvers for MHD (Miyoshi & Kusano 2007). The HLLC 

Riemann solver restores the contact discontinuity. The HLLD Riemann solver restores the contact 
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discontinuity as well as the linearly degenerate Alfven waves. Recent work by Dumbser & Balsara 

(2016) has resulted in an HLLEM Riemann solver which can restore all the waves in the MHD 

system while retaining many of the good positivity properties of the HLL Riemann solver. (We 

also refer to it as the HLLI Riemann solver because it is considerably different in scope and 

function from the original HLLEM Riemann solver. For example, the new HLLI Riemann solver 

can accommodate multiple Intermediate waves, which accounts for the “I” in HLLI. The original 

HLLEM only accounted for one contact discontinuity.) The code works with linearized Riemann 

solvers, HLL, HLLC and HLLD Riemann solvers and also the HLLI Riemann solver. Recent 

versions of the code give preference to the HLLI Riemann solver because of its superb stability, 

efficiency, versatility, accuracy with different wave families and good positivity properties. 

 The magnetic field evolves according to Faraday’s law. Faraday’s law, along with the lack 

of magnetic monopoles, ensures that the magnetic field remains divergence-free forever. 

Multidimensional MHD requires careful treatment of the divergence-free structure of the magnetic 

field (Yee 1966, Brackbill & Barnes 1980, Brecht et al. 1981, Evans & Hawley 1989, DeVore 

1991). The essential idea of a Yee-type mesh, where variables are staggered at various locations 

on the mesh, comes from finite difference time domain methods for computational 

electrodynamics. In computational MHD, the same staggering of variables is called constrained 

transport (CT) schemes, and they require that the magnetic fields be evolved at the faces of the 

mesh while the electric fields are to be obtained at the edges of the mesh. Usual conservation laws 

use zone-centered conserved variables which are updated using face-centered fluxes. The different 

staggering of variables in an MHD code raises two questions. First, if the magnetic field is facially 

collocated, what is the notion of carrying out its higher order reconstruction in a physically 

consistent divergence-free fashion? Second, how does one obtain the multidimensionally 

upwinded electric fields? The answers to these two questions are given in the next two paragraphs. 

 Divergence-free reconstruction is easier to resolve. It consists of endowing the facial 

components of the magnetic fields with sub-structure in a spirit that is analogous to the sub-

structure that is endowed to the slabs of fluid in a hydrodynamic code. This work has been 

documented in detail for structured meshes (Balsara 2001, 2004, 2009) and unstructured meshes 

(Balsara & Dumbser 2015, Xu, Balsara & Du 2016).  
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 Multidimensional upwinding is harder to resolve. Early efforts include (Balsara & Spicer 

1999a, Ryu et al. 1998, Dai & Woodward 1998, Londrillo & DelZanna 2004, Gardiner & Stone 

2005). However, it was always realized that if a multidimensional Riemann solver could exist, the 

problem of multidimensional upwinding of the electric field would be solved. At a conceptual 

level, a one-dimensional Riemann solver is invoked at a zone boundary; it takes in two states from 

either side of the zone boundary, and returns a resolved state and one upwinded numerical flux. 

Analogously, a multidimensional Riemann solver is invoked at the edge of a mesh; it takes in four 

states from all four sides of a structured mesh, and returns a resolved state and two 

multidimensionally upwinded numerical fluxes. It is precisely because the multidimensional 

Riemann solver sits at the edges of a mesh that make it so valuable for numerical MHD and other 

involution-constrained systems like numerical electrodynamics. Serviceable multidimensional 

Riemann solvers have recently been documented in the literature (Balsara 2010, 2012a, 2014, 

2015, Balsara, Dumbser & Abgrall 2014, Balsara & Dumbser 2015, Balsara et al. 2016). The 

multidimensional Riemann solver is also referred to as the MuSIC Riemann solver. MuSIC stands 

for Multidimensional, Self-similar Riemann Solver, based on a strongly-Interacting state that is 

Consistent with the governing hyperbolic law. Do please see Balsara (2010, 2012, 2014) for the 

origin of that name as well as seminal ideas about multidimensional Riemann solvers. The code 

incorporates both the above-mentioned advances from this and the previous paragraph.  

 As an extension, it is worth mentioning that the same two ideas of divergence-free 

reconstruction and multidimensional Riemann solvers have recently been extended to relativistic 

MHD (Balsara & Kim 2016) and relativistic two-fluid electrodynamics (Balsara et al. 2016). 

 Once the fluxes are obtained at the faces of the mesh, and once the electric fields are 

obtained at the edges of the mesh, it is easy to update the zone-centered variables in conservative 

fashion and the face-centered magnetic fields in a divergence-free fashion. Since attention has 

been paid to the space-time accuracy, this will be a high order update in space and time. This 

completes the algorithmic description of the RIEMANN code for astrophysical MHD. 

 Any code should be capable of operating safely. I.e. variables that are intrinsically positive, 

like the density and pressure, should be kept positive by the code as much as possible. This is 

called the physical realizability property, and a numerical code should respect physical 

realizability. Algorithms that ensure physical realizability have been described in Balsara & Spicer 
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(1999b) and more recently in improved form in Balsara (2012b) and Balsara and Kim (2016). 

Those algorithms are used in the code. 

 

II) Quick Start – Running your First Simulation and Visualizing it 

 The first step is always the hardest; so we have made it as simple as possible. Try to start 

in a Linux environment. The distribution already comes with a README file (this file). All the 

lines for compiling the code with various compilers are available in the file “sccompile.mhd”. 

Compile lines for Intel, PGI and GNU compilers are included. The GNU compilation is very fast 

and usually gives performance that is within 10% to 20% of the Intel compiler. (The code compiles 

serially or with OpenMP. It also has bindings with MPI-3 for up to PetaScale performance, though 

they may or may not be available with your particular distribution.) There is also a “Makefile” 

which works with the public domain GNU compiler. The MAIN code is in 

“Riemann_Multid_MHD_src”. IDL-based plotting routines are available (type “ls *.pro” to see 

the .pro files associated with IDL). GnuPlot-based plotting routines are also available in the 

distribution (look for the files “onedplot.sh” and “twodplot.sh”; open them and modify them as 

you wish). In general, IDL runs faster than GnuPlot and generates better-looking images, but 

GnuPlot is freeware. We suggest copying the distribution over to a scratch folder before running 

your first simulation in that same scratch folder. That way, you retain an original copy of the 

distribution. 

 Like any code, the code wakes up so that it does a default start-up problem. In this case, it 

does a 3D magnetized blast problem on a three-dimensional 96 96 96× ×  zone mesh at second 

order. This should be easy to run on a sufficiently powerful single core Linux workstation. (It is 

possible that you are not set up to visualize 3D data. In that case, it is best to visualize a slice of 

data from the midplane of the 3D simulation. To do that, just open file 

“Riemann_Multid_MHD_src” and look for all the instances of “unit = 99”. Just change “izz = 1, 

iz1” to “izz = iz1/2, iz1/2” in a few places where the image files are being written out. Now you 

will get the midplane slice of the 3D problem for visualization.) 

 It is also possible that you are running the code for the first time on a PC or a computer that 

is not so powerful. In that case, it might be appropriate to do a 2D version of the same problem. 
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To do that, set “iz1 = 1” and “ioffz = 0” in the first “PARAMETER” statement in 

“Riemann_Multid_MHD_src”. Also look for and set “#define TRUE_2D 1” in 

“Riemann_Multid_MHD_src”. Also, please open file “Applications_MHD_src” and set “bfz1 = 

0.0” in “SUBROUTINE INIT_BLAST_3D”. You have just turned the 3D problem into a small 

2D problem.  

 Type “make” and you will have an executable called “xmhd”. Type “nohup ./xmhd &” to 

run the executable. It will take a few minutes to run through. After it has run, modify 

“colorslice_jpg.pro” to visualize your images with IDL. Alternatively, modify “twodplot.sh” and 

visualize your images using gnuplot. 

Visualizing with IDL:- Open the file “colorslice_jpg.pro” and do the following steps:- 

1) Set “nx, ny” to the dimensions of your images. Set “nplanes” to the number of images in each 

family that you want to visualize. For example, if your images run from “rhoa0001” to “rhoa0015” 

then set “nplanes = 15”. 

2) “namearray” contains the names of all the image files that you might want to visualize. You 

might not want to visualize all the variables. Modify “namearray” and the extents of the loop “for 

index = 0, 7” to visualize only the variables of interest. Then close “colorslice_jpg.pro” 

3) Type “module load idl”, then type “idl” to get IDL started. 

4) At the idl> prompt, type “colorslice_jpg”. Then type “exit” to get out of IDL. 

5) There is also a “onedplot.pro” file for one-dimensional plots. It works pretty much the same 

way. 

Visualizing with GnuPlot:- Open the file “twodplot.sh” and do the following steps:- 

1) Set “nx, ny” to the dimensions of your images. Set “xmin, xmax, ymin, ymax” to the physical 

extent of the simulation. Set “nimages” to the number of images in each family that you want to 

visualize. For example, if your images run from “rhoa0001” to “rhoa0015” then set “nimages = 

15”. 

2) “datafilename” contains a list of image file names. Retain the ones you want to visualize. Then 

close “twodplot.sh”. 
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3) Type “./twodplot.sh”. You should get several image files. 

4) There is also a “onedplot.sh” file for one-dimensional plots. It works pretty much the same way. 

 If you see several *.jpg or *.jpeg files, visualize them. You should see a blast problem that 

is made anisotropic by the diagonally-oriented magnetic field. Congratulations! You have 

successfully run your first simulation with the code! (Please note that color images with GnuPlot 

don’t look quite as good as color images from IDL, so please use IDL if you at all can.) 

 

III) File Structure – Listing of Subroutines in Each of the Files and What they 

Do 

 Fig 1 provides a schematic structure of any predictor-corrector code. But we have not 

described how those tasks are instantiated via subroutines in the RIEMANN code. This is done in 

Fig. 2, which should be cross-compared with Fig. 1. It clearly shows which named subroutine in 

the RIEMANN code carries out which algorithmic task in the predictor-corrector-based timestep 

loop. 

 In the remainder of this section, we describe the file names and the subroutines that they 

contain and/or the tasks that they do. 
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III.a) The “directives” file:- This is the file that you go to before starting any simulation. There 

are overall variables ( known as “directives” even in computer science lingo) which control how 

the code behaves. In other words, the code undergoes conditional compilation based on your 

choice of directives. The directives are explained in detail in the directives file. To give several 

instances, this is where you choose whether the code makes a fresh start on a new simulation or 

restarts a pre-existing one. ( Focus on the directive “RESTART” to see that the code compiles a 

little differently when it is making a fresh start v/s when it is restarting. A small file called 

“riemann.in” is written out by the code to help it know where to restart; so if you plan to restart a 

simulation, please save that file along with any checkpoint/dump files). This is also where you 

choose the kind of reconstruction you want to carry out. (Some forms of reconstruction may be 

inexpensive, but less sophisticated. Other forms or reconstruction may cost more, but are more 

sophisticated.) This is also where you choose the order of accuracy of the space-time ADER-

WENO (or ADER-PPM or ADER-TVD) reconstruction; thereby setting the order of accuracy of 

the code that is compiled. Choosing a specific order of accuracy requires a whole slew of other 

parameters to be set consistently; but that is all done automatically at the bottom of the “directives” 

file. This is also where you choose whether you want to enforce positivity considerations on the 

code – i.e. whether you want the code to compulsively try and keep densities and pressures 

positive. This is also where you make your choice of Riemann solver (though we might default to 
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HLLI all the time, we like it that much!). Any change to the directives file should be followed by 

a complete recompilation of the code if the requested changes are to take hold! 

III.b) The “riemann.com” file:- This file again carries a lot of the information that is seen by 

practically every subroutine in the code. It should almost never be changed by the end-user.  

III.c) The “cool.com” file:- This file is just based on data needed for cooling functions. If your 

physical problem involves astrophysical cooling and heating, it may benefit from this file. 

Otherwise, don’t worry about this file. There is just such a large plethora of tailor-made cooling 

functions in astrophysics that it has become pointless to support a single set of cooling function 

routines. 

III.d) The “Riemann_Multid_MHD_src” file:- This is probably the most important file. It 

contains several important subroutines. Please read the narrative below while following along via 

Figs. 1 and 2. That will give maximum insight as to what the subroutines do. The subroutines are: 

A) “PROGRAM RIEMANN_MULTID_MHD” which is the MAIN code. We will have a lot 

more to say about this program unit in Section V (i.e., after we have talked at length about the 

individual subroutines as well as the important variables in the code). Suffice it to say that for most 

applications, the user will be working with it and modifying it to her/his needs. 

B) SUBROUTINES “PAD_BOUNDARY_X, PAD_BOUNDARY_Y, 

PAD_BOUNDARY_Z”. This set of three subroutines apply the boundary conditions in the logical 

x, y, and z-directions in the structured mesh code. While the code is logically Cartesian, it can 

accommodate other orthogonal meshes like cylindrical and spherical. However, the default is 

Cartesian x,y,z. (The choice of coordinate system is made via the variable “igeom”. “igeom = 1” 

for Cartesian. “igeom = 2” for cylindrical. “igeom = 3” for spherical.) These subroutines also 

connect very strongly to the 3D arrays “x_indx_limits, y_indx_limits, z_indx_limits” which 

control the dynamically active portion of the mesh. The boundary conditions are also 

communicated to these subroutines via “bcarr_x, bcarr_y, bcarr_z” which specify what type of 

boundaries we want at the lower and upper x-boundaries, lower and upper y-boundaries and lower 

and upper z-boundaries respectively. Certain boundary conditions are built in. For example, “1” 

means inflow boundary condition (though the choice of inflow variables has to be explicitly 

specified in the PAD_BOUNDARY_? Routines). Likewise, “2” means continuative boundary 
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condition. Similarly, “3” means reflective boundary condition. In serial setting “4” means periodic 

boundary conditions. When OpenMP parallelism is used exclusively, “4” can also be used for 

periodic boundary conditions. However, when MPI-based parallelism is used, please do not use 

“4” to specify the boundary conditions. The usage of the array sets “x_indx_limits, y_indx_limits, 

z_indx_limits” and “bcarr_x, bcarr_y, bcarr_z” to specify the boundary conditions is given in the 

main code. 

C) SUBROUTINE “LIMIT_ALL_MOMENTS”. This is the main spatial reconstruction 

routine. Several choices of reconstruction have been built into this subroutine. The conserved fluid 

variable “u” and the facial magnetic fields “bfxbdy, bfybdy, bfzbdy” enter this subroutine without 

reconstruction and exit with appropriate spatial reconstruction. We also build the zone-centered, 

reconstructed, “bfxccmodes, bfyccmodes, bfzccmodes” in this subroutine. This subroutine 

performs several tasks and we list them in sequence:- 

i) The first task in this subroutine consists of extracting the primitive variables “rhogr, prsgr, vlxgr, 

…etc.” from the conserved variable “u” and the facial magnetic fields “bfxbdy, bfybdy, bfzbdy”. 

The primitive variables are used in many different ways throughout the code. They are also the 

variables that are used for visualization. 

ii) From these, the divergence of the flow, “divvelgr” and a characteristic signal speed “msonicgr” 

are built at each zone. These two arrays are then used to design a “flattengr” variable within each 

zone which tells us how generously or cautiously the reconstruction can be carried out. (If there 

are no local shocks, we go for the best reconstruction that has been requested in the directives file. 

If local shocks exist, the flattener can be used to tone down the moments that are reconstructed.) 

iii) The spatial limiting/reconstruction is then carried out for all zone-centered and face-centered 

variables. If characteristic variables are called for, the characteristic limiting is done via calling a 

1D subroutine called “LIMIT_1D_MHD_CONS”. We start with “u ( 1: ix1, 1: iy1, 1: iz1, :, 1)” 

which has all the mean values of the conserved flow variables. At second order, the above variable 

is used to reconstruct the spatial gradients. “u ( 1: ix1, 1: iy1, 1: iz1, :, 2)” has the x-slopes of the 

flow variables; “u ( 1: ix1, 1: iy1, 1: iz1, :, 3)” has the y-slopes of the flow variables; “u ( 1: ix1, 

1: iy1, 1: iz1, :, 4)” has the z-slopes of the flow variables. The facial magnetic fields are also used 

to construct the gradients. Higher order moments can also be constructed. It is important to 

understand how these moments are stored in the computer. To see that, look at the top of the file 
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“Ader_1d_MHD_src”. It lists all the moments at all orders. The ordering of the spatial moments, 

as well as the ordering of the space-time moments, is described there. 

iv) Global min and max values for various diagnostic quantities are also built here and written out 

if that is called for. (Under MPI parallelism, the global min and max values have to be obtained 

via global reduction, of course.) 

D) SUBROUTINE “MAKE_ADER_UPDT_PTWISE”. This is the ADER space-time evolution 

step. At second order, the variables and their spatial gradients are stored in “u ( 1: ix1, 1: iy1, 1: 

iz1, :, 1:4)”. In other words, “u ( 1: ix1, 1: iy1, 1: iz1, :, 1)” has all the mean values of the flow 

variables; “u ( 1: ix1, 1: iy1, 1: iz1, :, 2)” has the x-slopes of the flow variables; “u ( 1: ix1, 1: iy1, 

1: iz1, :, 3)” has the y-slopes of the flow variables; “u ( 1: ix1, 1: iy1, 1: iz1, :, 4)” has the z-slopes 

of the flow variables. We now wish to use the spatial gradients to obtain the time rate of change 

of those variables and store it in “u ( 1: ix1, 1: iy1, 1: iz1, :, 5)”. This information pertaining to the 

space-time evolution of the PDE is built in the present subroutine. Each zone only looks at its own 

gradients within the zone. Therefore, this is only an “in-the-small” evolution of the PDE. The 

above narrative only describes the second order case because this is easiest to describe. For better 

than second order, we will even have to build the higher moments in time using the higher order 

spatial moments that are provided by the spatial reconstruction. In the higher order code, this is all 

packaged into subroutine “ADER_CG_MODAL_3D_MHD_PTWISE” which takes in the spatial 

reconstruction and outputs the space-time evolution. In the higher order code, all the ADER-related 

magic happens inside this subroutine. Realistically, we use “expand_by_one_zone = 1” which 

builds all this space-time information for one layer of zones that go beyond the physical domain. 

This is useful in the subsequent two sets of subroutines where fluxes and electric fields are 

calculated. 

E) SUBROUTINES “APPLY_MULTID_RS_X_EDGE, APPLY_MULTID_RS_Y_EDGE, 

APPLY_MULTID_RS_Z_EDGE”. Let us consider one of these subroutines, say 

“APPLY_MULTID_RS_Z_EDGE”. It operates at the z-edges of the mesh. At each of those edges, 

on a structured mesh, we have four states (from four immediately neighboring zones) coming 

together at that edge. Those four states give rise to a multidimensional Riemann problem at the 

edge in question. A two-dimensional Riemann solver produces one resolved state and two truly-

multidimensionally upwinded fluxes. As a result, the multidimensionally upwinded z-electric field 
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is evaluated at each of the z-edges of the code. We also obtain the x- and y-fluxes at the z-edge. 

These can be used in Simpson-rule-like fashion to improve the facially-averaged fluxes at the four 

faces that come together at that z-edge. This Simpson-rule-like evaluation is up to fourth order 

accurate. It furnishes this fourth order accuracy with a minimum of calls to the Riemann solvers. 

Consequently, “APPLY_MULTID_RS_Z_EDGE” does the full evaluation of the z-component of 

the electric field “efzgr”; it also makes edge-based contributions to the fluxes “flux_x” and 

“flux_y”. The multidimensional Riemann solver that is called by each of these three subroutines 

is called “MuSIC_MHD_2DRS_1_STRUCT”. The same multidimensional Riemann solver can 

be used at x-, y- and z-edges because we use cyclic rotations of the variables that are sent into and 

out of the interface of the multidimensional Riemann solver. 

F) SUBROUTINES “MAKE_FLUX_PTWISE_X, MAKE_FLUX_PTWISE_Y, 

MAKE_FLUX_PTWISE_Z”. These subroutines just call a one-dimensional Riemann solver 

which is evaluated at the face centers of the mesh. This is done in a fully traditional Godunov 

scheme fashion. However, please note that since part of the face-averaged flux has already been 

contributed by the edge-based multidimensional Riemann solver, we only contribute the rest of 

the flux in these subroutines. This is done in Simpson-rule-like fashion. The one-dimensional 

Riemann solver that is called by this routine is called “MHD_RIEM_HLLEM_PTWISE”. The 

same one-dimensional Riemann solver can be used at x-, y- and z-faces because we use cyclic 

rotations of the variables that are sent into and out of the interface of the one-dimensional Riemann 

solver. If reflective/wall boundary conditions are present, the entire flux comes from the one-

dimensional Riemann solver because this is indeed what is physically desired. (There are no 

multidimensional effects at a flat reflecting wall.) 

G) SUBROUTINE “UPDATE_VARS_CORRECTOR”. Does the final update step using the 

fluxes and the electric fields from the corrector step. 

H) SUBROUTINE “EVALUATE_TIMESTEP”. Evaluates the new timestep. 

III.e) The “Ader_1d_MHD_src” file:- Contains the subroutine 

“ADER_CG_MODAL_3D_MHD_PTWISE”. This does the ADER time-evolution within a zone. 

The top of this subroutine also lists all the space-time modes for all the variables. This information 

can be very useful. 
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III.f) The “Rho_Prs_Positivity” file:- Contains the subroutine “POSITIVE_RHO_PRS” which 

maintains the positivity of density and pressure by controlling the form of the reconstruction in 

zones that are likely to be troubled.  

III.g) The “MuSIC_MHD_Fast_src” file:- It contains the multidimensional Riemann solver 

called “MuSIC_MHD_2DRS_1_STRUCT”. Several other supporting subroutines are also 

provided. 

III.h) The “HLLEM_1D_MHD_src” file:- It contains the 1D HLLI Riemann solver called 

“MHD_RIEM_HLLEM_PTWISE” and other supporting subroutines. 

III.i) The “EOS_src” file:- It contains the equation of state routines. They can be modified to use 

different equations of state. 

III.j) The “Eigenvec_MHD_src” file:- It contains the MHD eigenvector routines. These 

eigenvectors are based on the work of Roe and Balsara (1996) and are designed so that they should 

never result in a singular evaluation, if physically meaningful flow variables are provided.  

III.k) The “Applications_MHD_src” file:- It contains numerous interesting hydrodynamics and 

MHD applications generator subroutines. The subroutine notes for each of the set-up subroutines 

contain sufficient information for setting up the application. All application-generators have 

subroutine names that begin with “INIT_” to show that they are application initialization routines. 

These initialization routines all (usually) have the same subroutine interface and are written so that 

they can also do patch-based initialization in an MPI setting. In some instances, an application 

might need additional routines and those routines follow immediately after the “INIT_” routine. 

Do browse this file when thinking about how to set up newer applications. 

 

IV) Variables that hold the Main Data – Setting up and Running a Simulation 

 The code can be run as a one-dimensional, two-dimensional or three-dimensional code. 

Because it is based on two-dimensional Riemann solvers, it naturally loses efficiency in 1D mode. 

In other words, a 1D simulation might invoke multidimensional Riemann solvers even when they 

are not really needed. But, if the problem is truly two dimensional, it can be made very efficient 

by setting “#define TRUE_2D 1” at the top of the main code. In that case, please make sure that 
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the problem is truly two-dimensional; i.e. no out-of-plane velocities or magnetic fields. If there are 

out-of-plane velocities or magnetic fields in a two-dimensional problem, set “#define TRUE_2D 

0”. 

 If we are simulating a 2D or 2.5D problem, we can turn off the third dimension in the 

following way. Imagine that the 2D or 2.5D problem has to be set up in the xy-plane. We can then 

set “iz1 = 1” (only one zone in the z-direction) and “ioffz = 0” (no offsets in the z-direction). 

 All the big static arrays are described in detail at the beginning of “PROGRAM 

RIEMANN_MULTID_MHD”. However, it would not hurt to give some supplemental information 

here. 

A) “ix1, iy1, iz1, ioffx, ioffy, ioffz”. These specify the extent of the logically Cartesian mesh. The 

range of dynamically active zone-centered variables is given by “( 1: ix1, 1: iy1, 1: iz1)”. The 

range of a dynamically active face-centered variable that lives in the x-face is given by “( 0: ix1, 

1: iy1, 1: iz1)”. Similarly, for the dynamically active y-face-centered variables the range is “( 1: 

ix1, 0: iy1, 1: iz1)”; for the dynamically active z-face-centered variables the range is “( 1: ix1, 1: 

iy1, 0: iz1)”. This also tells you what the indexing of the face-centered variables is relative to the 

zone-centered variables. Edge-centered variables follow the same convention. The “ioffx, ioffy, 

ioffz” specify the offsets in each direction so that the real extent of zone-centered indexing, with 

ghost zones, is “( 1 - ioffx: ix1 + ioffx, 1 - ioffy: iy1 + ioffy, 1 - ioffz: iz1 + ioffz)”. To turn a 

dimension off, say to turn off the z-dimension, set “iz1 = 1” and “ioffz = 0”. For dynamically 

active dimensions, “ioffx, ioffy, ioffz” are set to the same number and that number is determined 

by the size of the stencil. Second and third order, in three dimensions, can be safely accommodated 

by setting “ioffx = ioffy = ioffz = 4”. For fourth order, we have to enlarge the stencil, so that we 

set “ioffx = ioffy = ioffz = 6”. The second order stencils look like a cross-like shape. The higher 

order stencils include zones in other (diagonal) directions on the mesh. 

B) “n_cc_components”. Number of flow components. 8 for MHD without species fractions. If 

some number of species fractions are used, this number increases. For MHD, we have “NFIELD 

= 7” because there are seven evolutionary characteristic fields. However, there are eight variables; 

hence we add 1 more. If we are doing a multispecies calculation, set “NFLUID” to the number of 

extra species. 
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C) “n_cc_modes”. This is the number of space-time modes. For 2nd order code this is 5. I.e. we 

want the variable, its three spatial gradients and its linear evolution in time. For higher order codes, 

this number increases of course. 

D) “n_fc_modes”. Here “n_fc_modes” is the number of modes that are stored in each face for the 

moments of the magnetic field components.  

E) “u” is the most important array. It stores the vector of conserved variables at each zone, as well 

as its moments in space and time. It is a five dimensional array. The first three indices of this 

multidimensional array pertain to the x-, y- and z-directions. The fourth index pertains to the flow 

variables. The fourth index ranges from 1 to 8 in classical MHD. The vector of variables is (density, 

x-momentum density, y-momentum density, z-momentum density, energy density, zone-averaged 

x-magnetic field, zone-averaged y-magnetic field, zone-averaged z-magnetic field)T . Of course, 

multispecies flow can be accommodated by increasing “n_cc_components”. The fifth index of “u” 

ranges from 1 to 5 at second order. At higher orders, the fifth index has an even larger range 

because there are more space-time moments to keep track of.  

F) “entropygr” is an entropy density. It is an advected variable and can be useful for pressure 

positivity. 

G) “bfxbdy, bfybdy, bfzbdy” are the face-centered magnetic fields as well as their slopes in the 

two transverse directions. For example, “bfzbdy” holds the z-component of magnetic field in the 

z-face of the mesh.  But is also holds the linear variations of this field component in the x- and y-

directions. At higher orders it can hold more moments. 

H) “flux_x, flux_y, flux_z” hold the face-centered fluid fluxes. They are very useful for updating 

the zone-centered flow variables. 

I) “efxgr, efygr, efzgr” hold the edge-centered electric fields. They are used for updating the 

components of the magnetic fields that reside in the faces of the mesh. 

J) “prs_flux_x, prs_flux_y, prs_flux_z”  hold the flux terms specifically stemming from the 

pressure. Never needed on Cartesian meshes. However, in cylindrical and spherical geometries, 

the pressure flux and advected flux need to be treated differently at a coordinate singularity. For 

that reason, in other geometries, we split off the pressure part from the momentum flux. 
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K) “entropy_flux_x, entropy_flux_y, entropy_flux_z” holds the fluxes associated with the 

entropy density. This is useful for problems where pressure positivity might become an issue. 

L) “rhogr, prsgr, …” are just the arrays associated with the primitive variables on the mesh. The 

nomenclature of these variables is self-explanatory. They can be used for imaging and as auxiliary 

(helping) variables. 

M) “x_indx_limits, bcarr_x”. These two arrays control the boundary conditions that get imposed 

in “PAD_BOUNDARY_X”. They specify the lower and upper x-indices of the dynamically active 

part of the computational domain as well the boundary conditions that are to be imposed at the 

lower and upper x-boundaries of the domain. For zones with y- and z-indices given by ( iyy, izz) 

the dynamically active region lies between “x_indx_limits ( 1, iyy, izz)” and “x_indx_limits ( 2, 

iyy, izz)”. This allows us to set up non-cubical domains, if we wish. The boundary conditions at 

either end of this dynamically active region are specified by the values in “bcarr_x ( 1, iyy, izz)” 

and “bcarr_x ( 2, iyy, izz)”. The integers that specify the different types of boundary conditions 

are as follows:- “1” for inflow boundary condition; though the specific values have to be typed in. 

“2” for continuative boundary condition. “3” for reflective boundary condition. “4” for periodic 

boundary condition in a serial/OpenMP setting. 

N) “y_indx_limits, bcarr_y”. These two arrays control the boundary conditions that get imposed 

in “PAD_BOUNDARY_Y”. They specify the lower and upper y-indices of the dynamically active 

part of the computational domain as well the boundary conditions that are to be imposed at the 

lower and upper y-boundaries of the domain. For zones with x- and z-indices given by ( ixx, izz) 

the dynamically active region lies between “y_indx_limits ( ixx, 1, izz)” and “y_indx_limits ( ixx, 

2, izz)”. This allows us to set up non-cubical domains, if we wish. The boundary conditions at 

either end of this dynamically active region are specified by the values in “bcarr_y ( ixx, 1, izz)” 

and “bcarr_y ( ixx, 2, izz)”. 

O) “z_indx_limits, bcarr_z”. These two arrays control the boundary conditions that get imposed 

in “PAD_BOUNDARY_Z”. They specify the lower and upper z-indices of the dynamically active 

part of the computational domain as well the boundary conditions that are to be imposed at the 

lower and upper z-boundaries of the domain. For zones with x- and y-indices given by ( ixx, iyy) 

the dynamically active region lies between “z_indx_limits ( ixx, iyy, 1)” and “z_indx_limits ( ixx, 

iyy, 2)”. This allows us to set up non-cubical domains, if we wish. The boundary conditions at 
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either end of this dynamically active region are specified by the values in “bcarr_z ( ixx, iyy, 1)” 

and “bcarr_z ( ixx, iyy, 2)”. 

P) “xb_save, dx_save, xc_save”. The 1D array “xb_save” specifies the boundaries of the zones 

in the x-direction. The 1D array “dx_save” specifies the zone size in the x-direction. The 1D array 

“xc_save” specifies the centers of the zones in the x-direction. 

Q) “yb_save, dy_save, yc_save, zb_save, dz_save, zc_save” Analogous arrays to the previous 

1D arrays in the y- and z-directions. 

 

V) Structure of the MAIN Code 

 Imitation is the sincerest form of flattery; and also the best way to learn about a numerical 

code. In the distribution, we have included several example applications. Please try to run several 

of these before embarking on your own applications. The included applications will give you some 

idea as to how the code is to be set up and run. The narrative in this section maps out the mental 

decision-making that goes into setting up and running a simulation. In doing so, it also explains 

the structure of the code. 

 Compilation:- Compilation lines for various compilers are given in “sccompile.mhd” or 

use the “Makefile”. The executable name is “xmhd”. Run interactively with “nohup ./xmhd &” 

on any Linux machine; or use appropriate batch file at your installation. 

 Initialization:- Before starting a simulation, it is best to visit the “directives” file and 

decide upon the kind of algorithms that will be used. Also decide which application you want to 

run by visiting the “Applications_MHD_src” file and make sure that the desired application is 

called in “PROGRAM RIEMANN_MULTID_MHD”. Make sure that the appropriate 

dimensioning of the problem is specified by choosing “ix1, iy1, iz1, ioffx, ioffy, ioffz”. 

 The variable “NUMORDER” in the “directives” file is also very important. This is why it 

deserves its own descriptive paragraph. It controls the order of accuracy of the code. Several other 

variables are set up consistently in the “directives” file depending on the choice of 

“NUMORDER”. At second order, we can choose between TVD and low order WENO 

reconstruction based on setting “SLOPE_LIMITER 1” or “SLOPE_LIMITER 2” respectively 
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along with “NUMORDER 2”. At third order, we can choose between PPM and third order WENO 

reconstruction based on setting “SLOPE_LIMITER 1” or “SLOPE_LIMITER 2” respectively 

along with “NUMORDER 3”. We use the original PPM from Colella & Woodward (1984) because 

we have found it to be safer. PPM only constructs first and second moments in each direction. To 

attain true third order of accuracy in a finite volume context, we supplement the reconstruction 

with cross terms using Balsara et al. (2009). PPM will not be truly third order accurate, but third 

order WENO will meet its design accuracy. At fourth order, we only have fourth order accurate 

WENO, which is invoked with “NUMORDER 4”. 

 Main Variables:- The code begins with a declaration of variables and the most important 

multidimensional arrays that store the flow data. Notes on the usage of those variables/arrays are 

also provided right next to the variables.  

 Standard Input/Output:- Standard output is to “unit = 6”, which is a file called 

“riemann.out”. During each dump, the code also rewrites a file called “riemann.in” which will 

help with restart. Thus “riemann.in” and “riemann.out” should be saved when archiving a code for 

future restart. On each restart, “riemann.out” will be overwritten, so do save prior versions if 

needed. 

 To restart the code from a pre-existing dump/checkpoint file, please look up the variable 

“RESTART” in the “directives” file and also please make sure that you have saved the 

“riemann.in” file from the dump file that you are restarting from. 

 Dump and Image File Names:- The name of the dump/checkpoint file defaults to 

“dump0001” and the code increments dump file names automatically. The file name has the 

general format “????0001”, so up to 9999 dump files can be written per simulation, which is plenty. 

Dump files are written every “ndumpstep” timesteps. Imaging file names default to “rhoa0001, 

prsa0001, vlxa0001, vlya0001, vlza0001, bfxa0001, bfya0001, bfza0001” and are incremented 

automatically as the images are written out. Species fractions can also be included, if they are 

present.  

 Timestep Control:- The variable “time” keeps track of the simulation time. The current 

timestep is “dtcur”, which auto-adjusts as the simulation progresses. The timestep is regulated by 

the CFL number, which is stored in “cfl_coef”. The simulation is run till it reaches a simulated 
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time of “timestop”. Images are written after every interval of “dtimage” of simulation time. The 

variable “timeimage” is the last time when an image was written out. All these variables are set 

soon after the declaration of the main data arrays in the code.  

 Other Variables:- Floor values for density and pressure are “rhofloor, prsfloor”. The 

polytropic index is “gamma”. There are other variables that can also be reset; and they are also 

given at the beginning of the code. However, it is recommended that they should not be changed 

much by the end-user. All variables that are set are also mirrored back by the code at the top of the 

file “riemann.out” so that the user has a good idea of the kind of run s/he has asked for. I.e., the 

code tells you back the algorithms and setting that you chose. Some of those settings are, of course, 

controlled by the “directives” file too. The min and max of the major variables will be monitored 

every timestep and reported in “riemann.out”. Watch out for wild swings in these values because 

they can indicate that the simulation is in trouble. The code also reports on the time taken per 

timestep. The presence of unintended NANs can also cause the time taken per timestep to change 

dramatically, signifying a troubled simulation. Thus one can always check up on the status of a 

run that is ongoing by doing “tail -50 riemann.out”. 

 Problem Specification:- Choose problem dimensions by choosing “xmin, xmax, ymin, 

ymax, zmin, zmax”. Uniform zoning is the default and the code does that for you automatically. 

Choose zone sizes as needed. Also choose the boundary conditions consistently with the 

application needs. Look for the pattern “CALL INIT_” and make sure that the correct physical 

problem is being run by the code. 

 Stopping Conditions:- The code is designed to detect certain types of inconsistent set-ups. 

In that case, it writes a helpful message and stops graciously. It cannot detect all types of 

inconsistent set-ups though. It helps to pay attention to those stopping messages and accommodate 

to them. It does not pay to try and override the stopping messages. 

 Accuracy Testing:- Any code should meet its design accuracy. If the intended accuracy is 

not met, it can often reveal a code bug or a design flaw in the underlying algorithms. For that 

reason, some of the applications focus on accuracy testing. There are subroutines that will set up 

smoothly varying hydrodynamical and magnetohydrodynamical vortex test problems. Because the 

initial conditions are very smooth, the test problems are amenable to accuracy testing. There are 

supporting subroutines that will evaluate the error as a function of time when the test problem is 
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run. This will demonstrate whether the chosen algorithm meets its intended accuracy for a 

particular test problem when the test is carried out on a sequence of meshes with increasing 

resolution.  

 The distribution already includes the results of such accuracy analysis for hyrdodynamical 

and MHD test problems. The results show that ADER-WENO schemes meet their design 

accuracies quite nicely. This may not be so for other well-known options. That is why we have 

included ADER-WENO methods and also other options (like ADER-TVD and ADER-PPM) that 

may be better-known to some astronomers.  

 Main Timestep Loop:- The main timestep loop starts with “DO istep = 1, ntstep” and it is 

usually best to keep that timestep loop undisturbed. Its logic has already been described in Figs. 1 

and 2 and in the previous Sections. It may sometimes become necessary to force the flow in say a 

turbulence simulation. In that case, the best place to put in forcing is after the time update, so that 

all variables in conserved and primitive variables have been refreshed and can help in determining 

how to force the flow. If the code is run under OpenMP, it can also be made to keep track of the 

time spent on one CPU and the time spent by all CPUs. That can help in gauging parallel efficiency. 

HAPPY COMPUTING!! 
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