
1

README File: RIEMANN Code for Astrophysical MHD at High Order

Written by Dinshaw S. Balsara (dbalsara@nd.edu)

Introduction

 This is the README Document for the high order accurate RIEMANN code for non-

relativistic MHD by Dinshaw S. Balsara. The name celebrates the seminal contributions by the

mathematician Bernhard Riemann to the theory of hyperbolic PDEs (Riemann 1860). Though

second order for the sake of simplicity, the code exemplifies many frontline algorithmic ideas. The

same algorithmic ideas are readily extended in our higher order codes. For pedagogic reasons, it

might help to start with a 2nd order code and move up to a higher order code that follows the same

floor-plan. In fact, this README document for the higher order code very closely parallels the

README document for the 2nd order code because we wish to emphasize the similarity. The

algorithmic ideas will be detailed below. The code is organized as a set of few Fortran subroutines,

each of which does a functional task.

 The code is based on the philosophy that simplicity, taken to its limit, becomes elegance.

Astrophysical codes are very easy to understand if one takes an algorithms-first approach, because

most such codes are based on a very well-known algorithmic philosophy. Unfortunately, the trend

in astrophysics is to start with a very large and complex code and treat it like a black-box which

one tries to understand “from the outside-in”. This can become challenging. The present code is

best understood “from the inside-out”; i.e., as an instantiation of a certain algorithmic philosophy.

To help in that process, the reader is invited to download and learn from a set of lectures that are

freely available on the web. Please see http://www.nd.edu/~dbalsara/Numerical-PDE-Course. We

do request that using the code, or any part thereof, should result in citations to the original papers

(as is customary in good scientific practice).

 The RIEMANN code is self-documenting – In general, most types of information that you

need will be documented right in the code and right where you need it. The headers of most

subroutines describe in great detail the algorithms that are contained in that subroutine. Even so,

the user needs some basic orientation to get started. For that reason, the next several sections

mailto:dbalsara@nd.edu
http://www.nd.edu/%7Edbalsara/Numerical-PDE-Course

2

describe the following pieces of information. Section I describes the algorithmic structure of the

code. Section II deals with making a quick start by running your first simulation and visualizing

it. Section III describes the file structure and lists the subroutines in each of the files along with

information on what they do. Section IV catalogues the variables that hold the main simulation

data. Section V describes the structure of the main code and explains how one should set up an

application and run it. Papers that have been referenced in this readme file are also listed in detail

in the references section.

Good Luck, and Happy Computing!

I) Algorithmic Structure of the Code

 The present code is a higher order Godunov code (Godunov 1959). The code is based on a

predictor-corrector philosophy. Such a philosophy for the time-evolution of hyperbolic systems

was first initiated in van Leer (1977, 1979), Colella & Woodward (1984), Colella (1985) at second

order. That algorithmic outlook has now been polished and made available at all orders via Harten

et al. (1986), Jiang & Shu (1996), Balsara & Shu (2000), Dumbser et al. (2008), Balsara et al.

3

(2009, 2013). Let us very, very briefly explore the algorithmic content that goes into such a code.

As you read the subsequent paragraphs, please keep glancing at Fig. 1 from time to time.

 The first step is to make a TVD (Harten 1983) or PPM (Colella & Woodward 1984, Colella

& Sekora 2008, McCorquodale & Colella 2011) or WENO (Jiang & Shu 1996, Balsara & Shu

2000, Dumbser & Käser 2006, Balsara et al. 2009) spatial reconstruction. (Please note that in

order to have a meaningful reconstruction at the boundaries of the mesh, one has to apply boundary

conditions before the reconstruction step. But the kinds of boundary conditions that one chooses

are limited only by the computationalist’s creativity.) In simple terms, spatial reconstruction just

means endowing some reasonable sub-structure to the slab of fluid within a zone. This substructure

is evaluated at a given zone by analyzing flow variables in its neighboring zones. TVD (Total

Variation Diminishing) reconstructions yield second order accuracy. PPM (Piecewise Parabolic

Method) usually includes several ingredients of third order accuracy. WENO (Weighted

Essentially Non Oscillatory) reconstruction can provide arbitrary amounts of spatial accuracy,

provided the stencil is suitably large. But the basic task of reconstruction (also known as limiting)

is to make a non-oscillatory profile within each zone that is as high order accurate as possible. The

non-oscillatory profile endows sub-structure to the slab of fluid within a zone without introducing

new, spurious extrema. In this code, TVD, PPM and WENO reconstruction strategies have been

incorporated. WENO and PPM are supported as exemplars of third order schemes. Since our

reconstruction is finite volume-based, cross terms from Balsara et al. (2009) have to be included

in the reconstruction to make the PPM truly third order accurate. All WENO reconstructions

include such cross terms and are structured to meet their designed order of accuracy. A fourth

order WENO scheme is also provided.

 Having worked hard to endow the slabs of fluid with a meaningful internal sub-structure,

one desires to know how the PDE system will evolve within a zone for a small amount of time.

This is the famous Cauchy problem for a hyperbolic PDE which says, in pedestrian terms, that

given a smooth enough initial conditions for a PDE in space we can always evolve it for some

interval in time. Observe from the formal structure of a hyperbolic PDE -- () 0t xU F U∂ + ∂ = --

that if the spatial variation is known, the temporal evolution can be predicted, at least for a small

amount of time. This “evolution-in-the-small” is what goes on in the predictor step. I.e., since we

know the spatial gradients of a flow variable, via spatial reconstruction within a zone, we

4

understand that this will also provoke a temporal evolution of the flow variables. This is the

predictor step. Ideally, we want the time-accuracy of the predictor step to match the spatial

accuracy of the reconstruction. At second order, this is easily done. At third and higher orders, this

is a more sophisticated undertaking. A formal way of doing this, which always works at all orders,

is given by the ADER timestepping strategy (Dumbser et al. 2008, Balsara et al. 2009, 2013).

ADER stands for Arbitrary DERivatives in space and time. Basically, we are taking the spatially

reconstructed solution within a zone and evolving it within the same zone in space-time.

 For the sake of historical accuracy, it is worth mentioning that early ADER schemes were

based on the generalized Riemann problem (Titarev & Toro 2002, 2005, Toro & Titarev 2002).

But that construction proved to be unwieldy, giving rise to the more modern formulations

described in the previous paragraphs.

 Ultimately, the slabs of fluid need to interact with one another. This is needed if we have

to work out the flux of fluid that flows from one zone into the neighboring zone. The numerically

correct fluxes have to incorporate the physically consistent direction in which the flow occurs, and

that task falls to the Riemann solver. (Picking out the right direction from which the “wind” is

blowing is known as upwinding; and this is what the Riemann solver does for us.) The one-

dimensional Riemann solver sits at the zone boundary between two zones and uses the states from

either side of the zone boundary. One can think of the one-dimensional Riemann solver as being

just a machine that takes in two states (one from either side of a zone boundary) and produces a

properly upwinded numerical flux. For very large systems, like MHD, it is very inefficient to use

an exact Riemann solver. So one uses an approximate Riemann solver. Numerous good one-

dimensional Riemann solvers have been designed for MHD. An incomplete list follows. There are

linearized Riemann solvers for MHD (Brio & Wu 1988, Roe & Balsara 1996, Cargo & Gallice

1997, Balsara 1998a,b). Linearized Riemann solvers do not have a positivity property. I.e., the

resolved state, from which the numerical flux is calculated, may not have positive density and

pressure. HLL Riemann solvers have this positivity property. The HLL Riemann solver can be

quite dissipative, and this has spawned several variants of the HLL Riemann solver that try to

reduce the dissipation. Consequently, we also have HLLC Riemann solvers for MHD (Gurski

2005, Li 2006) and HLLD Riemann solvers for MHD (Miyoshi & Kusano 2007). The HLLC

Riemann solver restores the contact discontinuity. The HLLD Riemann solver restores the contact

5

discontinuity as well as the linearly degenerate Alfven waves. Recent work by Dumbser & Balsara

(2016) has resulted in an HLLEM Riemann solver which can restore all the waves in the MHD

system while retaining many of the good positivity properties of the HLL Riemann solver. (We

also refer to it as the HLLI Riemann solver because it is considerably different in scope and

function from the original HLLEM Riemann solver. For example, the new HLLI Riemann solver

can accommodate multiple Intermediate waves, which accounts for the “I” in HLLI. The original

HLLEM only accounted for one contact discontinuity.) The code works with linearized Riemann

solvers, HLL, HLLC and HLLD Riemann solvers and also the HLLI Riemann solver. Recent

versions of the code give preference to the HLLI Riemann solver because of its superb stability,

efficiency, versatility, accuracy with different wave families and good positivity properties.

 The magnetic field evolves according to Faraday’s law. Faraday’s law, along with the lack

of magnetic monopoles, ensures that the magnetic field remains divergence-free forever.

Multidimensional MHD requires careful treatment of the divergence-free structure of the magnetic

field (Yee 1966, Brackbill & Barnes 1980, Brecht et al. 1981, Evans & Hawley 1989, DeVore

1991). The essential idea of a Yee-type mesh, where variables are staggered at various locations

on the mesh, comes from finite difference time domain methods for computational

electrodynamics. In computational MHD, the same staggering of variables is called constrained

transport (CT) schemes, and they require that the magnetic fields be evolved at the faces of the

mesh while the electric fields are to be obtained at the edges of the mesh. Usual conservation laws

use zone-centered conserved variables which are updated using face-centered fluxes. The different

staggering of variables in an MHD code raises two questions. First, if the magnetic field is facially

collocated, what is the notion of carrying out its higher order reconstruction in a physically

consistent divergence-free fashion? Second, how does one obtain the multidimensionally

upwinded electric fields? The answers to these two questions are given in the next two paragraphs.

 Divergence-free reconstruction is easier to resolve. It consists of endowing the facial

components of the magnetic fields with sub-structure in a spirit that is analogous to the sub-

structure that is endowed to the slabs of fluid in a hydrodynamic code. This work has been

documented in detail for structured meshes (Balsara 2001, 2004, 2009) and unstructured meshes

(Balsara & Dumbser 2015, Xu, Balsara & Du 2016).

6

 Multidimensional upwinding is harder to resolve. Early efforts include (Balsara & Spicer

1999a, Ryu et al. 1998, Dai & Woodward 1998, Londrillo & DelZanna 2004, Gardiner & Stone

2005). However, it was always realized that if a multidimensional Riemann solver could exist, the

problem of multidimensional upwinding of the electric field would be solved. At a conceptual

level, a one-dimensional Riemann solver is invoked at a zone boundary; it takes in two states from

either side of the zone boundary, and returns a resolved state and one upwinded numerical flux.

Analogously, a multidimensional Riemann solver is invoked at the edge of a mesh; it takes in four

states from all four sides of a structured mesh, and returns a resolved state and two

multidimensionally upwinded numerical fluxes. It is precisely because the multidimensional

Riemann solver sits at the edges of a mesh that make it so valuable for numerical MHD and other

involution-constrained systems like numerical electrodynamics. Serviceable multidimensional

Riemann solvers have recently been documented in the literature (Balsara 2010, 2012a, 2014,

2015, Balsara, Dumbser & Abgrall 2014, Balsara & Dumbser 2015, Balsara et al. 2016). The

multidimensional Riemann solver is also referred to as the MuSIC Riemann solver. MuSIC stands

for Multidimensional, Self-similar Riemann Solver, based on a strongly-Interacting state that is

Consistent with the governing hyperbolic law. Do please see Balsara (2010, 2012, 2014) for the

origin of that name as well as seminal ideas about multidimensional Riemann solvers. The code

incorporates both the above-mentioned advances from this and the previous paragraph.

 As an extension, it is worth mentioning that the same two ideas of divergence-free

reconstruction and multidimensional Riemann solvers have recently been extended to relativistic

MHD (Balsara & Kim 2016) and relativistic two-fluid electrodynamics (Balsara et al. 2016).

 Once the fluxes are obtained at the faces of the mesh, and once the electric fields are

obtained at the edges of the mesh, it is easy to update the zone-centered variables in conservative

fashion and the face-centered magnetic fields in a divergence-free fashion. Since attention has

been paid to the space-time accuracy, this will be a high order update in space and time. This

completes the algorithmic description of the RIEMANN code for astrophysical MHD.

 Any code should be capable of operating safely. I.e. variables that are intrinsically positive,

like the density and pressure, should be kept positive by the code as much as possible. This is

called the physical realizability property, and a numerical code should respect physical

realizability. Algorithms that ensure physical realizability have been described in Balsara & Spicer

7

(1999b) and more recently in improved form in Balsara (2012b) and Balsara and Kim (2016).

Those algorithms are used in the code.

II) Quick Start – Running your First Simulation and Visualizing it

 The first step is always the hardest; so we have made it as simple as possible. Try to start

in a Linux environment. The distribution already comes with a README file (this file). All the

lines for compiling the code with various compilers are available in the file “sccompile.mhd”.

Compile lines for Intel, PGI and GNU compilers are included. The GNU compilation is very fast

and usually gives performance that is within 10% to 20% of the Intel compiler. (The code compiles

serially or with OpenMP. It also has bindings with MPI-3 for up to PetaScale performance, though

they may or may not be available with your particular distribution.) There is also a “Makefile”

which works with the public domain GNU compiler. The MAIN code is in

“Riemann_Multid_MHD_src”. IDL-based plotting routines are available (type “ls *.pro” to see

the .pro files associated with IDL). GnuPlot-based plotting routines are also available in the

distribution (look for the files “onedplot.sh” and “twodplot.sh”; open them and modify them as

you wish). In general, IDL runs faster than GnuPlot and generates better-looking images, but

GnuPlot is freeware. We suggest copying the distribution over to a scratch folder before running

your first simulation in that same scratch folder. That way, you retain an original copy of the

distribution.

 Like any code, the code wakes up so that it does a default start-up problem. In this case, it

does a 3D magnetized blast problem on a three-dimensional 96 96 96× × zone mesh at second

order. This should be easy to run on a sufficiently powerful single core Linux workstation. (It is

possible that you are not set up to visualize 3D data. In that case, it is best to visualize a slice of

data from the midplane of the 3D simulation. To do that, just open file

“Riemann_Multid_MHD_src” and look for all the instances of “unit = 99”. Just change “izz = 1,

iz1” to “izz = iz1/2, iz1/2” in a few places where the image files are being written out. Now you

will get the midplane slice of the 3D problem for visualization.)

 It is also possible that you are running the code for the first time on a PC or a computer that

is not so powerful. In that case, it might be appropriate to do a 2D version of the same problem.

8

To do that, set “iz1 = 1” and “ioffz = 0” in the first “PARAMETER” statement in

“Riemann_Multid_MHD_src”. Also look for and set “#define TRUE_2D 1” in

“Riemann_Multid_MHD_src”. Also, please open file “Applications_MHD_src” and set “bfz1 =

0.0” in “SUBROUTINE INIT_BLAST_3D”. You have just turned the 3D problem into a small

2D problem.

 Type “make” and you will have an executable called “xmhd”. Type “nohup ./xmhd &” to

run the executable. It will take a few minutes to run through. After it has run, modify

“colorslice_jpg.pro” to visualize your images with IDL. Alternatively, modify “twodplot.sh” and

visualize your images using gnuplot.

Visualizing with IDL:- Open the file “colorslice_jpg.pro” and do the following steps:-

1) Set “nx, ny” to the dimensions of your images. Set “nplanes” to the number of images in each

family that you want to visualize. For example, if your images run from “rhoa0001” to “rhoa0015”

then set “nplanes = 15”.

2) “namearray” contains the names of all the image files that you might want to visualize. You

might not want to visualize all the variables. Modify “namearray” and the extents of the loop “for

index = 0, 7” to visualize only the variables of interest. Then close “colorslice_jpg.pro”

3) Type “module load idl”, then type “idl” to get IDL started.

4) At the idl> prompt, type “colorslice_jpg”. Then type “exit” to get out of IDL.

5) There is also a “onedplot.pro” file for one-dimensional plots. It works pretty much the same

way.

Visualizing with GnuPlot:- Open the file “twodplot.sh” and do the following steps:-

1) Set “nx, ny” to the dimensions of your images. Set “xmin, xmax, ymin, ymax” to the physical

extent of the simulation. Set “nimages” to the number of images in each family that you want to

visualize. For example, if your images run from “rhoa0001” to “rhoa0015” then set “nimages =

15”.

2) “datafilename” contains a list of image file names. Retain the ones you want to visualize. Then

close “twodplot.sh”.

9

3) Type “./twodplot.sh”. You should get several image files.

4) There is also a “onedplot.sh” file for one-dimensional plots. It works pretty much the same way.

 If you see several *.jpg or *.jpeg files, visualize them. You should see a blast problem that

is made anisotropic by the diagonally-oriented magnetic field. Congratulations! You have

successfully run your first simulation with the code! (Please note that color images with GnuPlot

don’t look quite as good as color images from IDL, so please use IDL if you at all can.)

III) File Structure – Listing of Subroutines in Each of the Files and What they

Do

 Fig 1 provides a schematic structure of any predictor-corrector code. But we have not

described how those tasks are instantiated via subroutines in the RIEMANN code. This is done in

Fig. 2, which should be cross-compared with Fig. 1. It clearly shows which named subroutine in

the RIEMANN code carries out which algorithmic task in the predictor-corrector-based timestep

loop.

 In the remainder of this section, we describe the file names and the subroutines that they

contain and/or the tasks that they do.

10

III.a) The “directives” file:- This is the file that you go to before starting any simulation. There

are overall variables (known as “directives” even in computer science lingo) which control how

the code behaves. In other words, the code undergoes conditional compilation based on your

choice of directives. The directives are explained in detail in the directives file. To give several

instances, this is where you choose whether the code makes a fresh start on a new simulation or

restarts a pre-existing one. (Focus on the directive “RESTART” to see that the code compiles a

little differently when it is making a fresh start v/s when it is restarting. A small file called

“riemann.in” is written out by the code to help it know where to restart; so if you plan to restart a

simulation, please save that file along with any checkpoint/dump files). This is also where you

choose the kind of reconstruction you want to carry out. (Some forms of reconstruction may be

inexpensive, but less sophisticated. Other forms or reconstruction may cost more, but are more

sophisticated.) This is also where you choose the order of accuracy of the space-time ADER-

WENO (or ADER-PPM or ADER-TVD) reconstruction; thereby setting the order of accuracy of

the code that is compiled. Choosing a specific order of accuracy requires a whole slew of other

parameters to be set consistently; but that is all done automatically at the bottom of the “directives”

file. This is also where you choose whether you want to enforce positivity considerations on the

code – i.e. whether you want the code to compulsively try and keep densities and pressures

positive. This is also where you make your choice of Riemann solver (though we might default to

11

HLLI all the time, we like it that much!). Any change to the directives file should be followed by

a complete recompilation of the code if the requested changes are to take hold!

III.b) The “riemann.com” file:- This file again carries a lot of the information that is seen by

practically every subroutine in the code. It should almost never be changed by the end-user.

III.c) The “cool.com” file:- This file is just based on data needed for cooling functions. If your

physical problem involves astrophysical cooling and heating, it may benefit from this file.

Otherwise, don’t worry about this file. There is just such a large plethora of tailor-made cooling

functions in astrophysics that it has become pointless to support a single set of cooling function

routines.

III.d) The “Riemann_Multid_MHD_src” file:- This is probably the most important file. It

contains several important subroutines. Please read the narrative below while following along via

Figs. 1 and 2. That will give maximum insight as to what the subroutines do. The subroutines are:

A) “PROGRAM RIEMANN_MULTID_MHD” which is the MAIN code. We will have a lot

more to say about this program unit in Section V (i.e., after we have talked at length about the

individual subroutines as well as the important variables in the code). Suffice it to say that for most

applications, the user will be working with it and modifying it to her/his needs.

B) SUBROUTINES “PAD_BOUNDARY_X, PAD_BOUNDARY_Y,

PAD_BOUNDARY_Z”. This set of three subroutines apply the boundary conditions in the logical

x, y, and z-directions in the structured mesh code. While the code is logically Cartesian, it can

accommodate other orthogonal meshes like cylindrical and spherical. However, the default is

Cartesian x,y,z. (The choice of coordinate system is made via the variable “igeom”. “igeom = 1”

for Cartesian. “igeom = 2” for cylindrical. “igeom = 3” for spherical.) These subroutines also

connect very strongly to the 3D arrays “x_indx_limits, y_indx_limits, z_indx_limits” which

control the dynamically active portion of the mesh. The boundary conditions are also

communicated to these subroutines via “bcarr_x, bcarr_y, bcarr_z” which specify what type of

boundaries we want at the lower and upper x-boundaries, lower and upper y-boundaries and lower

and upper z-boundaries respectively. Certain boundary conditions are built in. For example, “1”

means inflow boundary condition (though the choice of inflow variables has to be explicitly

specified in the PAD_BOUNDARY_? Routines). Likewise, “2” means continuative boundary

12

condition. Similarly, “3” means reflective boundary condition. In serial setting “4” means periodic

boundary conditions. When OpenMP parallelism is used exclusively, “4” can also be used for

periodic boundary conditions. However, when MPI-based parallelism is used, please do not use

“4” to specify the boundary conditions. The usage of the array sets “x_indx_limits, y_indx_limits,

z_indx_limits” and “bcarr_x, bcarr_y, bcarr_z” to specify the boundary conditions is given in the

main code.

C) SUBROUTINE “LIMIT_ALL_MOMENTS”. This is the main spatial reconstruction

routine. Several choices of reconstruction have been built into this subroutine. The conserved fluid

variable “u” and the facial magnetic fields “bfxbdy, bfybdy, bfzbdy” enter this subroutine without

reconstruction and exit with appropriate spatial reconstruction. We also build the zone-centered,

reconstructed, “bfxccmodes, bfyccmodes, bfzccmodes” in this subroutine. This subroutine

performs several tasks and we list them in sequence:-

i) The first task in this subroutine consists of extracting the primitive variables “rhogr, prsgr, vlxgr,

…etc.” from the conserved variable “u” and the facial magnetic fields “bfxbdy, bfybdy, bfzbdy”.

The primitive variables are used in many different ways throughout the code. They are also the

variables that are used for visualization.

ii) From these, the divergence of the flow, “divvelgr” and a characteristic signal speed “msonicgr”

are built at each zone. These two arrays are then used to design a “flattengr” variable within each

zone which tells us how generously or cautiously the reconstruction can be carried out. (If there

are no local shocks, we go for the best reconstruction that has been requested in the directives file.

If local shocks exist, the flattener can be used to tone down the moments that are reconstructed.)

iii) The spatial limiting/reconstruction is then carried out for all zone-centered and face-centered

variables. If characteristic variables are called for, the characteristic limiting is done via calling a

1D subroutine called “LIMIT_1D_MHD_CONS”. We start with “u (1: ix1, 1: iy1, 1: iz1, :, 1)”

which has all the mean values of the conserved flow variables. At second order, the above variable

is used to reconstruct the spatial gradients. “u (1: ix1, 1: iy1, 1: iz1, :, 2)” has the x-slopes of the

flow variables; “u (1: ix1, 1: iy1, 1: iz1, :, 3)” has the y-slopes of the flow variables; “u (1: ix1,

1: iy1, 1: iz1, :, 4)” has the z-slopes of the flow variables. The facial magnetic fields are also used

to construct the gradients. Higher order moments can also be constructed. It is important to

understand how these moments are stored in the computer. To see that, look at the top of the file

13

“Ader_1d_MHD_src”. It lists all the moments at all orders. The ordering of the spatial moments,

as well as the ordering of the space-time moments, is described there.

iv) Global min and max values for various diagnostic quantities are also built here and written out

if that is called for. (Under MPI parallelism, the global min and max values have to be obtained

via global reduction, of course.)

D) SUBROUTINE “MAKE_ADER_UPDT_PTWISE”. This is the ADER space-time evolution

step. At second order, the variables and their spatial gradients are stored in “u (1: ix1, 1: iy1, 1:

iz1, :, 1:4)”. In other words, “u (1: ix1, 1: iy1, 1: iz1, :, 1)” has all the mean values of the flow

variables; “u (1: ix1, 1: iy1, 1: iz1, :, 2)” has the x-slopes of the flow variables; “u (1: ix1, 1: iy1,

1: iz1, :, 3)” has the y-slopes of the flow variables; “u (1: ix1, 1: iy1, 1: iz1, :, 4)” has the z-slopes

of the flow variables. We now wish to use the spatial gradients to obtain the time rate of change

of those variables and store it in “u (1: ix1, 1: iy1, 1: iz1, :, 5)”. This information pertaining to the

space-time evolution of the PDE is built in the present subroutine. Each zone only looks at its own

gradients within the zone. Therefore, this is only an “in-the-small” evolution of the PDE. The

above narrative only describes the second order case because this is easiest to describe. For better

than second order, we will even have to build the higher moments in time using the higher order

spatial moments that are provided by the spatial reconstruction. In the higher order code, this is all

packaged into subroutine “ADER_CG_MODAL_3D_MHD_PTWISE” which takes in the spatial

reconstruction and outputs the space-time evolution. In the higher order code, all the ADER-related

magic happens inside this subroutine. Realistically, we use “expand_by_one_zone = 1” which

builds all this space-time information for one layer of zones that go beyond the physical domain.

This is useful in the subsequent two sets of subroutines where fluxes and electric fields are

calculated.

E) SUBROUTINES “APPLY_MULTID_RS_X_EDGE, APPLY_MULTID_RS_Y_EDGE,

APPLY_MULTID_RS_Z_EDGE”. Let us consider one of these subroutines, say

“APPLY_MULTID_RS_Z_EDGE”. It operates at the z-edges of the mesh. At each of those edges,

on a structured mesh, we have four states (from four immediately neighboring zones) coming

together at that edge. Those four states give rise to a multidimensional Riemann problem at the

edge in question. A two-dimensional Riemann solver produces one resolved state and two truly-

multidimensionally upwinded fluxes. As a result, the multidimensionally upwinded z-electric field

14

is evaluated at each of the z-edges of the code. We also obtain the x- and y-fluxes at the z-edge.

These can be used in Simpson-rule-like fashion to improve the facially-averaged fluxes at the four

faces that come together at that z-edge. This Simpson-rule-like evaluation is up to fourth order

accurate. It furnishes this fourth order accuracy with a minimum of calls to the Riemann solvers.

Consequently, “APPLY_MULTID_RS_Z_EDGE” does the full evaluation of the z-component of

the electric field “efzgr”; it also makes edge-based contributions to the fluxes “flux_x” and

“flux_y”. The multidimensional Riemann solver that is called by each of these three subroutines

is called “MuSIC_MHD_2DRS_1_STRUCT”. The same multidimensional Riemann solver can

be used at x-, y- and z-edges because we use cyclic rotations of the variables that are sent into and

out of the interface of the multidimensional Riemann solver.

F) SUBROUTINES “MAKE_FLUX_PTWISE_X, MAKE_FLUX_PTWISE_Y,

MAKE_FLUX_PTWISE_Z”. These subroutines just call a one-dimensional Riemann solver

which is evaluated at the face centers of the mesh. This is done in a fully traditional Godunov

scheme fashion. However, please note that since part of the face-averaged flux has already been

contributed by the edge-based multidimensional Riemann solver, we only contribute the rest of

the flux in these subroutines. This is done in Simpson-rule-like fashion. The one-dimensional

Riemann solver that is called by this routine is called “MHD_RIEM_HLLEM_PTWISE”. The

same one-dimensional Riemann solver can be used at x-, y- and z-faces because we use cyclic

rotations of the variables that are sent into and out of the interface of the one-dimensional Riemann

solver. If reflective/wall boundary conditions are present, the entire flux comes from the one-

dimensional Riemann solver because this is indeed what is physically desired. (There are no

multidimensional effects at a flat reflecting wall.)

G) SUBROUTINE “UPDATE_VARS_CORRECTOR”. Does the final update step using the

fluxes and the electric fields from the corrector step.

H) SUBROUTINE “EVALUATE_TIMESTEP”. Evaluates the new timestep.

III.e) The “Ader_1d_MHD_src” file:- Contains the subroutine

“ADER_CG_MODAL_3D_MHD_PTWISE”. This does the ADER time-evolution within a zone.

The top of this subroutine also lists all the space-time modes for all the variables. This information

can be very useful.

15

III.f) The “Rho_Prs_Positivity” file:- Contains the subroutine “POSITIVE_RHO_PRS” which

maintains the positivity of density and pressure by controlling the form of the reconstruction in

zones that are likely to be troubled.

III.g) The “MuSIC_MHD_Fast_src” file:- It contains the multidimensional Riemann solver

called “MuSIC_MHD_2DRS_1_STRUCT”. Several other supporting subroutines are also

provided.

III.h) The “HLLEM_1D_MHD_src” file:- It contains the 1D HLLI Riemann solver called

“MHD_RIEM_HLLEM_PTWISE” and other supporting subroutines.

III.i) The “EOS_src” file:- It contains the equation of state routines. They can be modified to use

different equations of state.

III.j) The “Eigenvec_MHD_src” file:- It contains the MHD eigenvector routines. These

eigenvectors are based on the work of Roe and Balsara (1996) and are designed so that they should

never result in a singular evaluation, if physically meaningful flow variables are provided.

III.k) The “Applications_MHD_src” file:- It contains numerous interesting hydrodynamics and

MHD applications generator subroutines. The subroutine notes for each of the set-up subroutines

contain sufficient information for setting up the application. All application-generators have

subroutine names that begin with “INIT_” to show that they are application initialization routines.

These initialization routines all (usually) have the same subroutine interface and are written so that

they can also do patch-based initialization in an MPI setting. In some instances, an application

might need additional routines and those routines follow immediately after the “INIT_” routine.

Do browse this file when thinking about how to set up newer applications.

IV) Variables that hold the Main Data – Setting up and Running a Simulation

 The code can be run as a one-dimensional, two-dimensional or three-dimensional code.

Because it is based on two-dimensional Riemann solvers, it naturally loses efficiency in 1D mode.

In other words, a 1D simulation might invoke multidimensional Riemann solvers even when they

are not really needed. But, if the problem is truly two dimensional, it can be made very efficient

by setting “#define TRUE_2D 1” at the top of the main code. In that case, please make sure that

16

the problem is truly two-dimensional; i.e. no out-of-plane velocities or magnetic fields. If there are

out-of-plane velocities or magnetic fields in a two-dimensional problem, set “#define TRUE_2D

0”.

 If we are simulating a 2D or 2.5D problem, we can turn off the third dimension in the

following way. Imagine that the 2D or 2.5D problem has to be set up in the xy-plane. We can then

set “iz1 = 1” (only one zone in the z-direction) and “ioffz = 0” (no offsets in the z-direction).

 All the big static arrays are described in detail at the beginning of “PROGRAM

RIEMANN_MULTID_MHD”. However, it would not hurt to give some supplemental information

here.

A) “ix1, iy1, iz1, ioffx, ioffy, ioffz”. These specify the extent of the logically Cartesian mesh. The

range of dynamically active zone-centered variables is given by “(1: ix1, 1: iy1, 1: iz1)”. The

range of a dynamically active face-centered variable that lives in the x-face is given by “(0: ix1,

1: iy1, 1: iz1)”. Similarly, for the dynamically active y-face-centered variables the range is “(1:

ix1, 0: iy1, 1: iz1)”; for the dynamically active z-face-centered variables the range is “(1: ix1, 1:

iy1, 0: iz1)”. This also tells you what the indexing of the face-centered variables is relative to the

zone-centered variables. Edge-centered variables follow the same convention. The “ioffx, ioffy,

ioffz” specify the offsets in each direction so that the real extent of zone-centered indexing, with

ghost zones, is “(1 - ioffx: ix1 + ioffx, 1 - ioffy: iy1 + ioffy, 1 - ioffz: iz1 + ioffz)”. To turn a

dimension off, say to turn off the z-dimension, set “iz1 = 1” and “ioffz = 0”. For dynamically

active dimensions, “ioffx, ioffy, ioffz” are set to the same number and that number is determined

by the size of the stencil. Second and third order, in three dimensions, can be safely accommodated

by setting “ioffx = ioffy = ioffz = 4”. For fourth order, we have to enlarge the stencil, so that we

set “ioffx = ioffy = ioffz = 6”. The second order stencils look like a cross-like shape. The higher

order stencils include zones in other (diagonal) directions on the mesh.

B) “n_cc_components”. Number of flow components. 8 for MHD without species fractions. If

some number of species fractions are used, this number increases. For MHD, we have “NFIELD

= 7” because there are seven evolutionary characteristic fields. However, there are eight variables;

hence we add 1 more. If we are doing a multispecies calculation, set “NFLUID” to the number of

extra species.

17

C) “n_cc_modes”. This is the number of space-time modes. For 2nd order code this is 5. I.e. we

want the variable, its three spatial gradients and its linear evolution in time. For higher order codes,

this number increases of course.

D) “n_fc_modes”. Here “n_fc_modes” is the number of modes that are stored in each face for the

moments of the magnetic field components.

E) “u” is the most important array. It stores the vector of conserved variables at each zone, as well

as its moments in space and time. It is a five dimensional array. The first three indices of this

multidimensional array pertain to the x-, y- and z-directions. The fourth index pertains to the flow

variables. The fourth index ranges from 1 to 8 in classical MHD. The vector of variables is (density,

x-momentum density, y-momentum density, z-momentum density, energy density, zone-averaged

x-magnetic field, zone-averaged y-magnetic field, zone-averaged z-magnetic field)T . Of course,

multispecies flow can be accommodated by increasing “n_cc_components”. The fifth index of “u”

ranges from 1 to 5 at second order. At higher orders, the fifth index has an even larger range

because there are more space-time moments to keep track of.

F) “entropygr” is an entropy density. It is an advected variable and can be useful for pressure

positivity.

G) “bfxbdy, bfybdy, bfzbdy” are the face-centered magnetic fields as well as their slopes in the

two transverse directions. For example, “bfzbdy” holds the z-component of magnetic field in the

z-face of the mesh. But is also holds the linear variations of this field component in the x- and y-

directions. At higher orders it can hold more moments.

H) “flux_x, flux_y, flux_z” hold the face-centered fluid fluxes. They are very useful for updating

the zone-centered flow variables.

I) “efxgr, efygr, efzgr” hold the edge-centered electric fields. They are used for updating the

components of the magnetic fields that reside in the faces of the mesh.

J) “prs_flux_x, prs_flux_y, prs_flux_z” hold the flux terms specifically stemming from the

pressure. Never needed on Cartesian meshes. However, in cylindrical and spherical geometries,

the pressure flux and advected flux need to be treated differently at a coordinate singularity. For

that reason, in other geometries, we split off the pressure part from the momentum flux.

18

K) “entropy_flux_x, entropy_flux_y, entropy_flux_z” holds the fluxes associated with the

entropy density. This is useful for problems where pressure positivity might become an issue.

L) “rhogr, prsgr, …” are just the arrays associated with the primitive variables on the mesh. The

nomenclature of these variables is self-explanatory. They can be used for imaging and as auxiliary

(helping) variables.

M) “x_indx_limits, bcarr_x”. These two arrays control the boundary conditions that get imposed

in “PAD_BOUNDARY_X”. They specify the lower and upper x-indices of the dynamically active

part of the computational domain as well the boundary conditions that are to be imposed at the

lower and upper x-boundaries of the domain. For zones with y- and z-indices given by (iyy, izz)

the dynamically active region lies between “x_indx_limits (1, iyy, izz)” and “x_indx_limits (2,

iyy, izz)”. This allows us to set up non-cubical domains, if we wish. The boundary conditions at

either end of this dynamically active region are specified by the values in “bcarr_x (1, iyy, izz)”

and “bcarr_x (2, iyy, izz)”. The integers that specify the different types of boundary conditions

are as follows:- “1” for inflow boundary condition; though the specific values have to be typed in.

“2” for continuative boundary condition. “3” for reflective boundary condition. “4” for periodic

boundary condition in a serial/OpenMP setting.

N) “y_indx_limits, bcarr_y”. These two arrays control the boundary conditions that get imposed

in “PAD_BOUNDARY_Y”. They specify the lower and upper y-indices of the dynamically active

part of the computational domain as well the boundary conditions that are to be imposed at the

lower and upper y-boundaries of the domain. For zones with x- and z-indices given by (ixx, izz)

the dynamically active region lies between “y_indx_limits (ixx, 1, izz)” and “y_indx_limits (ixx,

2, izz)”. This allows us to set up non-cubical domains, if we wish. The boundary conditions at

either end of this dynamically active region are specified by the values in “bcarr_y (ixx, 1, izz)”

and “bcarr_y (ixx, 2, izz)”.

O) “z_indx_limits, bcarr_z”. These two arrays control the boundary conditions that get imposed

in “PAD_BOUNDARY_Z”. They specify the lower and upper z-indices of the dynamically active

part of the computational domain as well the boundary conditions that are to be imposed at the

lower and upper z-boundaries of the domain. For zones with x- and y-indices given by (ixx, iyy)

the dynamically active region lies between “z_indx_limits (ixx, iyy, 1)” and “z_indx_limits (ixx,

iyy, 2)”. This allows us to set up non-cubical domains, if we wish. The boundary conditions at

19

either end of this dynamically active region are specified by the values in “bcarr_z (ixx, iyy, 1)”

and “bcarr_z (ixx, iyy, 2)”.

P) “xb_save, dx_save, xc_save”. The 1D array “xb_save” specifies the boundaries of the zones

in the x-direction. The 1D array “dx_save” specifies the zone size in the x-direction. The 1D array

“xc_save” specifies the centers of the zones in the x-direction.

Q) “yb_save, dy_save, yc_save, zb_save, dz_save, zc_save” Analogous arrays to the previous

1D arrays in the y- and z-directions.

V) Structure of the MAIN Code

 Imitation is the sincerest form of flattery; and also the best way to learn about a numerical

code. In the distribution, we have included several example applications. Please try to run several

of these before embarking on your own applications. The included applications will give you some

idea as to how the code is to be set up and run. The narrative in this section maps out the mental

decision-making that goes into setting up and running a simulation. In doing so, it also explains

the structure of the code.

 Compilation:- Compilation lines for various compilers are given in “sccompile.mhd” or

use the “Makefile”. The executable name is “xmhd”. Run interactively with “nohup ./xmhd &”

on any Linux machine; or use appropriate batch file at your installation.

 Initialization:- Before starting a simulation, it is best to visit the “directives” file and

decide upon the kind of algorithms that will be used. Also decide which application you want to

run by visiting the “Applications_MHD_src” file and make sure that the desired application is

called in “PROGRAM RIEMANN_MULTID_MHD”. Make sure that the appropriate

dimensioning of the problem is specified by choosing “ix1, iy1, iz1, ioffx, ioffy, ioffz”.

 The variable “NUMORDER” in the “directives” file is also very important. This is why it

deserves its own descriptive paragraph. It controls the order of accuracy of the code. Several other

variables are set up consistently in the “directives” file depending on the choice of

“NUMORDER”. At second order, we can choose between TVD and low order WENO

reconstruction based on setting “SLOPE_LIMITER 1” or “SLOPE_LIMITER 2” respectively

20

along with “NUMORDER 2”. At third order, we can choose between PPM and third order WENO

reconstruction based on setting “SLOPE_LIMITER 1” or “SLOPE_LIMITER 2” respectively

along with “NUMORDER 3”. We use the original PPM from Colella & Woodward (1984) because

we have found it to be safer. PPM only constructs first and second moments in each direction. To

attain true third order of accuracy in a finite volume context, we supplement the reconstruction

with cross terms using Balsara et al. (2009). PPM will not be truly third order accurate, but third

order WENO will meet its design accuracy. At fourth order, we only have fourth order accurate

WENO, which is invoked with “NUMORDER 4”.

 Main Variables:- The code begins with a declaration of variables and the most important

multidimensional arrays that store the flow data. Notes on the usage of those variables/arrays are

also provided right next to the variables.

 Standard Input/Output:- Standard output is to “unit = 6”, which is a file called

“riemann.out”. During each dump, the code also rewrites a file called “riemann.in” which will

help with restart. Thus “riemann.in” and “riemann.out” should be saved when archiving a code for

future restart. On each restart, “riemann.out” will be overwritten, so do save prior versions if

needed.

 To restart the code from a pre-existing dump/checkpoint file, please look up the variable

“RESTART” in the “directives” file and also please make sure that you have saved the

“riemann.in” file from the dump file that you are restarting from.

 Dump and Image File Names:- The name of the dump/checkpoint file defaults to

“dump0001” and the code increments dump file names automatically. The file name has the

general format “????0001”, so up to 9999 dump files can be written per simulation, which is plenty.

Dump files are written every “ndumpstep” timesteps. Imaging file names default to “rhoa0001,

prsa0001, vlxa0001, vlya0001, vlza0001, bfxa0001, bfya0001, bfza0001” and are incremented

automatically as the images are written out. Species fractions can also be included, if they are

present.

 Timestep Control:- The variable “time” keeps track of the simulation time. The current

timestep is “dtcur”, which auto-adjusts as the simulation progresses. The timestep is regulated by

the CFL number, which is stored in “cfl_coef”. The simulation is run till it reaches a simulated

21

time of “timestop”. Images are written after every interval of “dtimage” of simulation time. The

variable “timeimage” is the last time when an image was written out. All these variables are set

soon after the declaration of the main data arrays in the code.

 Other Variables:- Floor values for density and pressure are “rhofloor, prsfloor”. The

polytropic index is “gamma”. There are other variables that can also be reset; and they are also

given at the beginning of the code. However, it is recommended that they should not be changed

much by the end-user. All variables that are set are also mirrored back by the code at the top of the

file “riemann.out” so that the user has a good idea of the kind of run s/he has asked for. I.e., the

code tells you back the algorithms and setting that you chose. Some of those settings are, of course,

controlled by the “directives” file too. The min and max of the major variables will be monitored

every timestep and reported in “riemann.out”. Watch out for wild swings in these values because

they can indicate that the simulation is in trouble. The code also reports on the time taken per

timestep. The presence of unintended NANs can also cause the time taken per timestep to change

dramatically, signifying a troubled simulation. Thus one can always check up on the status of a

run that is ongoing by doing “tail -50 riemann.out”.

 Problem Specification:- Choose problem dimensions by choosing “xmin, xmax, ymin,

ymax, zmin, zmax”. Uniform zoning is the default and the code does that for you automatically.

Choose zone sizes as needed. Also choose the boundary conditions consistently with the

application needs. Look for the pattern “CALL INIT_” and make sure that the correct physical

problem is being run by the code.

 Stopping Conditions:- The code is designed to detect certain types of inconsistent set-ups.

In that case, it writes a helpful message and stops graciously. It cannot detect all types of

inconsistent set-ups though. It helps to pay attention to those stopping messages and accommodate

to them. It does not pay to try and override the stopping messages.

 Accuracy Testing:- Any code should meet its design accuracy. If the intended accuracy is

not met, it can often reveal a code bug or a design flaw in the underlying algorithms. For that

reason, some of the applications focus on accuracy testing. There are subroutines that will set up

smoothly varying hydrodynamical and magnetohydrodynamical vortex test problems. Because the

initial conditions are very smooth, the test problems are amenable to accuracy testing. There are

supporting subroutines that will evaluate the error as a function of time when the test problem is

22

run. This will demonstrate whether the chosen algorithm meets its intended accuracy for a

particular test problem when the test is carried out on a sequence of meshes with increasing

resolution.

 The distribution already includes the results of such accuracy analysis for hyrdodynamical

and MHD test problems. The results show that ADER-WENO schemes meet their design

accuracies quite nicely. This may not be so for other well-known options. That is why we have

included ADER-WENO methods and also other options (like ADER-TVD and ADER-PPM) that

may be better-known to some astronomers.

 Main Timestep Loop:- The main timestep loop starts with “DO istep = 1, ntstep” and it is

usually best to keep that timestep loop undisturbed. Its logic has already been described in Figs. 1

and 2 and in the previous Sections. It may sometimes become necessary to force the flow in say a

turbulence simulation. In that case, the best place to put in forcing is after the time update, so that

all variables in conserved and primitive variables have been refreshed and can help in determining

how to force the flow. If the code is run under OpenMP, it can also be made to keep track of the

time spent on one CPU and the time spent by all CPUs. That can help in gauging parallel efficiency.

HAPPY COMPUTING!!

References

D.S. Balsara, Linearized Formulation of the Riemann Problem for Adiabatic and Isothermal

Magnetohydrodynamics, Ap.J. Supp., Vol. 116, Pg. 119-131 (1998a)

D.S. Balsara, Total Variation Diminishing Algorithm for Adiabatic and Isothermal

Magnetohydrodynamics, Ap.J. Supp., Vol. 116, Pgs. 133-153 (1998b)

D.S. Balsara & D. Spicer, A Staggered Mesh Algorithm Using Higher Order Godunov Fluxes to

Ensure Solenoidal Magnetic Fields in MHD Simulations, J. Comput. Phys., Vol. 149, Pgs. 270-

292 (1999a)

D.S. Balsara & D. Spicer, Maintaining Pressure Positivity in MHD Flows, J. Comput. Phys., Vol.

148, Pg. 133-148 (1999b)

23

D.S. Balsara & C.-W.Shu Monotonicity Preserving Weighted Essentially Non-Oscillatory

Schemes with Increasingly High Order of Accuracy, J. Comput. Phys., Vol. 160, Pgs. 405-452

(2000)

D.S. Balsara, Divergence-Free Adaptive Mesh Refinement for Magnetohydrodynamics, J. Comput.

Phys., Vol. 174(2), Pgs. 614-648 (2001)

D.S. Balsara, Second Order Accurate Schemes for Magnetohydrodynamics With Divergence-Free

Reconstruction, Ap.J.Supp., Vol. 151(1), Pgs. 149-184, (2004)

D.S. Balsara, T. Rumpf, M. Dumbser & C.-D. Munz, Efficient, High Accuracy ADER-WENO

Schemes for Hydrodynamics and Divergence-Free Magnetohydrodynamics, J. Comp. Phys., Vol.

228, Pgs. 2480-2516 (2009)

D.S. Balsara, Divergence-free Reconstruction of Magnetic Fields and WENO Schemes for

Magnetohydrodynamics, J. Comp. Phys., Vol. 228, Pgs. 5040-5056 (2009)

D.S. Balsara, Multidimensional Extension of the HLLE Riemann Solver; Application to Euler and

Magnetohydrodynamical Flows, J. Comp. Phys. Vol. 229, Pgs. 1970-1993 (2010)

D.S. Balsara, A Two-Dimensional HLLC Riemann Solver with applications to Euler and MHD

Flows, J. Comp. Phys., Vol. 231 (2012a) Pgs. 7476-7503

D.S. Balsara, Self-Adjusting, Positivity Preserving High Order Schemes for Hydrodynamics and

Magnetohydrodynamics, J. Comp. Phys., Vol. 231 (2012b) Pgs. 7504-7517

D.S. Balsara , M. Dumbser and R. Abgrall, Multidimensional HLL and HLLC Riemann Solvers

for Unstructured Meshes – With Application to Euler and MHD Flows, Journal of Computational

Physics, 261 (2014) 172-208

D.S. Balsara, Multidimensional Riemann Problem with Self-Similar Internal Structure – Part I –

Application to Hyperbolic Conservation Laws on Structured Meshes, Journal of Computational

Physics 277 (2014) 163-200

D.S. Balsara and M. Dumbser, Multidimensional Riemann Problem with Self-Similar Internal

Structure – Part II – Application to Hyperbolic Conservation Laws on Unstructured Meshes,

Journal of Computational Physics, 287 (2015) 269-292

24

D.S. Balsara and M. Dumbser, Divergence-Free MHD on Unstructured Meshes using High Order

Finite Volume Schemes Based on Multidimensional Riemann Solvers, Journal of Computational

Physics 299 (2015) 687-715

D.S. Balsara, Three Dimensional HLL Riemann Solver for Structured Meshes; Application to

Euler and MHD Flow, Journal of Computational Physics 295 (2015) 1-23

D.S. Balsara, J. Vides, K. Gurski, B. Nkonga, M. Dumbser, S. Garain, E. Audit, A Two-

Dimensional Riemann Solver with Self-Similar Sub-Structure – Alternative Formulation Based on

Least Squares Projection, Journal of Computational Physics 304 (2016) 138-161

D.S. Balsara and J. Kim, A Subluminal relativistic Magnetohydrodynamics Scheme with ADER-

WENO predictor and multidimensional Riemann solver-based corrector, Journal of

Computational Physics , Vol. 312 (2016) 357-384

D.S. Balsara, T. Amano, S. Garain, J. Kim, High Order Accuracy Divergence-Free Scheme for

the Electrodynamics of Relativistic Plasmas with Multidimensional Riemann Solvers, Journal of

Computational Physics 318 (2016) 169-200

J. U. Brackbill and D. C. Barnes, The effect of nonzero B∇⋅ on the numerical solution of the

magnetohydrodynamic equations, Journal of Computational Physics 35 (1980) 426-430

S. H. Brecht, J. G. Lyon, J. A. Fedder, K. Hain, A simulation study of east-west IMF effects on the

magnetosphere, Geophysical Research Lett. 8 (1981) 397

M. Brio & C.C. Wu , An upwind differencing scheme for the equations of ideal

magnetohydrodynamics, Journal of Computational Physics 75 (1988) 400

Colella, P. & Woodward, P., The Piecewise Parabolic Method (PPM) for Gas-Dynamical

Simulations, Journal of Computational Physics, 54 (1984) 174

Colella, P., A Direct Eulerian MUSCL Scheme for Gas Dynamics, SIAM Journal of Scientific and

Statistical Computing, 6 (1985) 104

P. Colella and J. Sekora, A limiter for PPM that preserves accuracy at smooth extrema, Journal of

Computational Physics, 227, (2008) 7069-7076

25

W. Dai and P.R. Woodward, On the divergence-free condition and conservation laws in numerical

simulations for supersonic magnetohydrodynamic flows, Astrophysical Journal 494 (1998) 317-

335

C. R. DeVore, Flux-corrected transport techniques for multidimensional compressible

magnetohydrodynamics, Journal of Computational Physics 92 (1991) 142-160

M., Dumbser, M., Käser, Arbitary high order non-oscillatory finite volume schemes on
unstructured meshes for linear hyperbolic systems, Journal of Computational Physics, 221 (2007)
693-723

Dumbser, M., Balsara, D.S., Toro, E.F., Munz, C.-D., A unified framework for the construction of

one-step finite volume and discontinuous Galerkin schemes on unstructured meshes, Journal of

Computational Physics, 227 (2008) 8209-8253

M. Dumbser and D.S. Balsara, A New, Efficient Formulation of the HLLEM Riemann Solver for

General Conservative and Non-Conservative Hyperbolic Systems, Journal of Computational

Physics 304 (2016) 275-319

B.Einfeldt, C.-D. Munz, P.L. Roe & B. Sjogreen, On Godunov-type methods near low densities,

J. Comput. Phys., 92 (1991) 273-295

C.R.Evans and J.F.Hawley, Simulation of Magnetohydrodynamic Flows: A Constrained Transport

Method, Astrophysical Journal 332 (1989) 659

T. Gardiner & J.M. Stone, An unsplit Godunov method for ideal MHD via constrained transport,

Journal of Computational Physics, 205 (2005), 509

Godunov, S.K., A difference method for the numerical calculation of discontinuous solutions of

the equations of hydrodynamics, Mat. Sb., 47 (1959) 271-306

K.F. Gurski, An HLLC-type approximate Riemann solver for ideal magnetohydrodynamics, SIAM

J. Sci. Comput. 25 (2004) 2165

Harten, A., High resolution schemes for conservation laws, Journal of Computational Physics, 49

(1983) 357-393

A. Harten, B. Engquist, S.Osher and S. Chakravarthy, Uniformly high order essentially non-

oscillatory schemes III, Journal of Computational Physics, 71 (1987) 231-303

26

Jiang, G.-S. and Shu, C.-W., Efficient implementation of weighted ENO schemes, Journal of

Computational Physics, 126 (1996) 202-228

S.-T. Li, An HLLC Riemann solver for magnetohydrodynamics, J. Comput. Phys., 203 (2005) 344

P. Londrillo and L. DelZanna, On the divergence-free condition in Godunov-type schemes for

ideal magnetohydrodynamics: the upwind constrained transport method, Journal of

Computational Physics 195 (2004) 17-48

P. McCorquodale and P. Colella, A high order finite volume method for conservation laws on

locally refined grids, Communications in Applied Mathematics and Computational Science, 6(1)

(2011) 1

T. Miyoshi and K. Kusano, A multi-state HLL approximate Riemann solver for ideal

magnetohydrodynamics, J. Comput. Phys., 208 (2005) 315-344

Riemann, B., Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite,

Abhandlungen der Gesselschaft der Wissenschaften zu Gottingen, Mathematisch-physicalische

Klasse 8 (1860) 43

P. L. Roe and D. S. Balsara, Notes on the eigensystem of magnetohydrodynamics, SIAM Journal

of applied Mathematics 56 (1996), 57

D. Ryu, F. Miniati, T. W. Jones, and A. Frank, A divergence-free upwind code for

multidimensional magnetohydrodynamic flows, Astrophysical Journal 509 (1998) 244-255

Titarev, V.A. and Toro, E.F., ADER: arbitrary high order Godunov approach, Journal of Scientific
Computing 17 (1-4) (2002) 609-618

Titarev, V.A. and Toro, E.F., ADER schemes for three-dimensional nonlinear hyperbolic systems,
Journal of Computational Physics, 204 (2005) 715-736

Toro, E.F. and Titarev, V.A., Solution of the generalized Riemann problem for advection reaction
equations, Proceedings of the Royal Society of London, Series A 458 (2002) 271-281

van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to

numerical convection, Journal of Computational Physics, 23 (1977) 276-299

van Leer, B., Toward the ultimate conservative difference scheme. V. A second-order sequel to

Godunov’s method, Journal of Computational Physics, 32 (1979) 101

27

K.S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell Equation in

an Isotropic Media, IEEE Trans. Antenna Propagation 14 (1966) 302

Z. Xu, D.S. Balsara and H. Du, Divergence-Free WENO Reconstruction-Based Finite Volume

Scheme for Ideal MHD Equations on Triangular Meshes, Communications in Computational

Physics, 19(04) (2016) 841-880

