Star formation: protostellar collapse

Benoît Commerçon

Centre de Recherche Astrophysique de Lyon G. Chabrier, P. Marchand, J. Masson (CRAL Lyon) E. Audit, P. Hennebelle, M. González (CEA Saclay/AIM) N. Vaytet (NBI Copenhagen), R. Teyssier (Zurich)

1. Introduction

2. Methods

• AMR vs. SPH

3. Low mass dense core collapse

- RHD and RMHD collapse
- Disk formation and fragmentation crisis
- Synthetic observations

4. Massive dense cores collapse

- Early fragmentation inhibition
- Disk & outflow formation

Turbulent molecular cloud

✓ Very few pbs in astrophysics without link to stars

✓ From large to small scales

- interstellar cycle
- galaxy formation and evolution
- planet formation/life

✓ A lot of open questions, e.g. :

- angular momentum/magnetic flux
- disk formation
- fragmentation, multiplicity, IMF, CMF
- star/brown dwarf/planet formation
- massive star formation

Motivation for instrumentation, e.g., JWST, ALMA & HERSCHEL <=> THEORETICAL support

✓ Very few pbs in astrophysics without link to stars

✓ From large to small scales

- interstellar cycle
- galaxy formation and evolution
- planet formation/life

✓ A lot of open questions, e.g. :

- angular momentum/magnetic flux
- disk formation
- fragmentation, multiplicity, IMF, CMF
- star/brown dwarf/planet formation
- massive star formation

Motivation for instrumentation, e.g., JWST, ALMA & HERSCHEL <=> THEORETICAL support

Dense core formation

- At the sonic scale for the majority
- Dense core are the progenitors of stars
- 1-1 relation between core mass function and initial stellar mass function?

Konyves et al. (2010) HERSCHEL Observations

Star formation: building blocks & challenge

- from parsec scale (10¹⁸ cm) to stellar radius (10¹⁰ cm)
- density: from 1 cm⁻³ to 10²⁴ cm⁻³
- temperature: 10 K -10⁶ K
- ionisation depends on density and temperature... (ideal vs nonideal MHD)
- chemistry, dust grain evolution (*H*₂ formation, growth, evaporation)

- initial conditions for stellar evolution (*entropy level, magnetic* field flux/geometry, angular momentum)

Star formation: the challenge

✓ Follow the dynamics over a wide range of physical scales:

- time scales: free-fall time (~10^{4,5} yr) to second
- spatial scales: parsec to stellar radius
- physical scales: density ranges form 1 cm⁻³ to 10²⁴ cm⁻³

Vaytet et al. (2013)

Star formation evolutionary sequence

Star formation evolutionary sequence

Star formation evolutionary sequence

$$M_{\rm Jeans} \propto \rho^{\frac{3}{2}n-2}$$

Protostellar core

Protostellar core

Machida et al.

Numerical experiments

Typical initial conditions:

- I M_{\odot} isolated dense core
- uniform / BE-like density profile
- uniform temperature (10 K, $\alpha = E_{th}/E_{grav}$)
- solid body / differential rotation ($\beta = E_{rot}/E_{grav}$)
- m=2 density perturbation / turbulent velocity field
- organised magnetic field
- $\mu = (\phi/M)_{crit} / (\phi/M)$ (observations $\mu \sim 2-5$)

Refinement criterion solely based on the Jeans length

Numerical experiments

Typical initial conditions:

- I M_{\odot} isolated dense core
- uniform / BE-like density profile
- uniform temperature (10 K, $\alpha = E_{th}/E_{grav}$)
- solid body / differential rotation ($\beta = E_{rot}/E_{grav}$)
- m=2 density perturbation / turbulent velocity field
- organised magnetic field

 $\mu = (\phi/M)_{crit} / (\phi/M)$ (observations $\mu \sim 2-5$)

Refinement criterion solely based on the Jeans length

Banerjee & Pudritz (2006)

Effect of magnetic fields and rotation

Consider a cloud of initial radius R, mass M and temperature T

Thermal support

• E_{th}/Egrav decreases when R decreases

 $\frac{E_{\rm th}}{E_{\rm grav}} = \frac{3M/m_p kT}{2GM^2/R} \propto R$

 $\frac{E_{\rm mag}}{E_{\rm grav}} = \frac{B^2 R^3}{GM^2/R} \propto \left(\frac{\phi}{M}\right)^2$

Centrifugal support

- Angular momentum conservation
- Erot/Egrav increases when R decreases

$$\dot{T} = R_0^2 \omega_0 = R^2 \omega(t)$$

 $\frac{E_{\rm rot}}{E_{\rm grav}} = \frac{M R^2 \omega^2}{G M^2 / R} \propto \frac{1}{R}$

Magnetic support

- Magnetic flux conservation $\phi \propto B R^2$
- $\bullet \ E_{mag}/Egrav \ is \ constant \ when \ R \ decreases$

 $\mu = (\phi/M)_{crit}/(\phi/M)$ (observations $\mu \sim 2-5$)

Effect of magnetic fields and rotation

Consequences:

Centrifugal forces become dominant

- flattening of the envelope
- formation of a centrifugally supported disk

Magnetic forces stay comparable to gravity

- flattening of the envelope
- NO formation if a supported structure
- formation of a pseudo-disk (Galli & Shu 1993)

Magnetic fields brakes the cloud

• transfer angular momentum from the inner part to the envelop

1. Introduction

2. Methods

• AMR vs. SPH

3. Low mass dense core collapse

- RHD and RMHD collapse
- Disk formation and fragmentation crisis
- Synthetic observations

4. Massive dense cores collapse

- Early fragmentation inhibition
- Disk & outflow formation

Numerics for star formation

★ 2 numerical methods :

Grid based code (AMR) : RAMSES code (Teyssier 2002, Fromang et al. 2006, Commerçon et al. 2011a), ORION code (Krumholz et al.)
FLASH code (Banerjee, Seifried et al.), etc...

- ➡ Advantages :
 - ✓ accuracy
 - ✓ shocks
 - ✓ refinement criteria
- Disadvantages :
 - ✓ (headhach)
 - ✓ Eulerian

Banerjee & Pudritz 06

- ➡ Advantages :
 - ✓ Lagrangian
 - ✓ naturally adaptive
 - ✓ (simpler)

- Disadvantages :
 - ✓ low density = low resolution
 - ✓ noise, dissipative
 - ✓ young

Bate et al. 02,03,08

★ Gravitational instability → Jeans length

AMR : Refinement criteria N_J as a function of the local Jean

 $N_{\rm J}$. $\Delta x < \lambda_{\rm Jeans}$

- → Truelove et al. 1997: $N_{\rm J} \ge 4$
- → Dynamical criterion

★ Gravitational instability → Jeans length $\lambda_J = c_s \sqrt{\frac{\pi}{600}}$

AMR : Refinement criteria N_J as a function of the local Jean

 $N_{\rm J}$. $\Delta x < \lambda_{\rm Jeans}$

- → Truelove et al. 1997: $N_{\rm J} \ge 4$
- → Dynamical criterion

★ Gravitational instability → Jeans length $\lambda_J = c_{s_1} / \frac{1}{C_0}$

AMR : Refinement criteria $N_{\rm J}$ as a function of the local Jean

 $N_{\rm J}$. $\Delta x < \lambda_{\rm Jeans}$

- → Truelove et al. 1997: $N_{\rm J} \ge 4$
- Dynamical criterion

SPH : Total mass of the system particle + 2 N_N (M_{res}) should always be < than the local Jeans mass M_{Jeans} (Bate & Burkert 1997) → static criterion

 \rightarrow 2 parameters : N_p number of particles

 $N_{\rm N}$ number of neighbors

SPH : Total mass of the system particle + 2 N_N (M_{res}) should always be < than the local Jeans mass M_{Jeans} (Bate & Burkert 1997) → static criterion

 \rightarrow 2 parameters : N_p number of particles

 $N_{\rm N}$ number of neighbors

AMR vs. SPH resolution:

- ★ Debate on the accuracy of both methods:
- => Are these methods appropriate for star formation?
- => Are they converging?
- Identical initial conditions (uniform density & temperature sphere in solid body rotation, Boss & Bodenheimer test)

 $N_{\rm l}^3 = M_{\rm leans}/M_{\rm res}$

 Same equations (Euler equation: mass, momentum and total energy + barotropic closure relation)

AMR vs. SPH: Convergence

Commerçon et al. 2008

AMR vs. SPH: Convergence

AMR: $64^3 (L_{min}=6)$; $N_J=15$! SPH: $N_p=5x10^5$; $N_N=50$ i.e. ~ 5300 particles/Jeans mass !

- CONVERGENCE!

Commerçon et al. 2008

1. Introduction

2. Methods

• AMR vs. SPH

3. Low mass dense core collapse

- RHD and RMHD collapse
- Disk formation and fragmentation crisis
- Synthetic observations

4. Massive dense cores collapse

- Early fragmentation inhibition
- Disk & outflow formation

- ✓ Adaptive-mesh-refinement code RAMSES (Teyssier 2002)
- ✓ Non-ideal MHD solver using Constrained Transport (Teyssier et al. 2006, Fromang et al. 2006, Masson et al. 2012,2016). In this work, just ambipolar diffusion with resistivity from equilibrium gas-grain chemistry (Marchand et al. 2016)
- ✓ Multifrequency Radiation-HD solver using the Flux Limited Diffusion approximation (Commerçon et al. 2011, 2014, González et al. 2015). In this work, just grey
- ✓ Sink particles using clump finder algorithm (Bleuler & Teyssier 2014)
- ✓ Gas-grain opacities from Semenov et al. (2003)
- $\begin{aligned} \partial_{t}\rho &+ \nabla \cdot [\rho \mathbf{u}] &= 0\\ \partial_{t}\rho \mathbf{u} &+ \nabla \cdot [\rho \mathbf{u} \otimes \mathbf{u} + P\mathbb{I}] &= -\rho \nabla \Phi \lambda \nabla E_{\mathrm{r}} + (\nabla \times \mathbf{B}) \times \mathbf{B}\\ \partial_{t}E_{\mathrm{T}} &+ \nabla \cdot [\mathbf{u} (E_{\mathrm{T}} + P_{\mathrm{T}}) \mathbf{B}(\mathbf{B} \cdot \mathbf{u}) E_{\mathrm{AD}} \times \mathbf{B}] &= -\rho \mathbf{u} \cdot \nabla \Phi \mathbb{P}_{\mathrm{r}} \nabla : \mathbf{u} \lambda \mathbf{u} \nabla E_{\mathrm{r}} + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_{\mathrm{R}}} \nabla E_{\mathrm{r}}\right)\\ \partial_{t}E_{\mathrm{r}} &+ \nabla \cdot [\mathbf{u}E_{\mathrm{r}}] &= -\mathbb{P}_{\mathrm{r}} \nabla : \mathbf{u} + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_{\mathrm{R}}} \nabla E_{\mathrm{r}}\right) + \kappa_{\mathrm{P}} \rho c (a_{\mathrm{R}} T^{4} E_{\mathrm{r}})\\ \partial_{t}B &- \nabla \times (\mathbf{u} \times \mathbf{B}) \nabla \times E_{\mathrm{AD}} &= 0 \end{aligned}$

- ✓ Adaptive-mesh-refinement code RAMSES (Teyssier 2002)
- ✓ Non-ideal MHD solver using Constrained Transport (Teyssier et al. 2006, Fromang et al. 2006, Masson et al. 2012,2016). In this work, just ambipolar diffusion with resistivity from equilibrium gas-grain chemistry (Marchand et al. 2016)
- ✓ Multifrequency Radiation-HD solver using the Flux Limited Diffusion approximation (Commerçon et al. 2011, 2014, González et al. 2015). In this work, just grey
- ✓ Sink particles using clump finder algorithm (Bleuler & Teyssier 2014)
- ✓ Gas-grain opacities from Semenov et al. (2003)

$$\begin{aligned} \partial_t \rho &+ \nabla \cdot [\rho \mathbf{u}] &= 0 \\ \partial_t \rho \mathbf{u} &+ \nabla \cdot [\rho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}] &= -\rho \nabla \Phi - \lambda \nabla E_r + (\nabla \times \mathbf{B}) \times \mathbf{B} \\ \partial_t E_T &+ \nabla \cdot [\mathbf{u} (E_T + P_T) - \mathbf{B} (\mathbf{B} \cdot \mathbf{u}) - E_{AD} \times \mathbf{B}] &= -\rho \mathbf{u} \cdot \nabla \Phi - \mathbb{P}_r \nabla : \mathbf{u} - \lambda \mathbf{u} \nabla E_r + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_R} \nabla E_r\right) \\ \partial_t E_r &+ \nabla \cdot [\mathbf{u} E_r] &= -\mathbb{P}_r \nabla : \mathbf{u} + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_R} \nabla E_r\right) + \kappa_P \rho c (a_R T^4 - E_r) \\ \partial_t B &- \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times E_{AD} &= 0 \end{aligned}$$

Gravitational

- ✓ Adaptive-mesh-refinement code RAMSES (Teyssier 2002)
- ✓ Non-ideal MHD solver using Constrained Transport (Teyssier et al. 2006, Fromang et al. 2006, Masson et al. 2012,2016). In this work, just ambipolar diffusion with resistivity from equilibrium gas-grain chemistry (Marchand et al. 2016)
- ✓ Multifrequency Radiation-HD solver using the Flux Limited Diffusion approximation (Commerçon et al. 2011, 2014, González et al. 2015). In this work, just grey
- ✓ Sink particles using clump finder algorithm (Bleuler & Teyssier 2014)
- ✓ Gas-grain opacities from Semenov et al. (2003)

$$\begin{array}{rcl} \partial_t \rho & + & \nabla \cdot [\rho \mathbf{u}] & = & 0 \\ \partial_t \rho \mathbf{u} & + & \nabla \cdot [\rho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}] & = & -\rho \nabla \Phi - \lambda \nabla E_r + (\nabla \times \mathbf{B}) \times \mathbf{B} \\ \partial_t E_T & + & \nabla \cdot [\mathbf{u} (E_T + P_T) - \mathbf{B} (\mathbf{B} \cdot \mathbf{u}) - E_{AD} \times \mathbf{B}] & & -\rho \mathbf{u} \cdot \nabla \Phi - \mathbb{P}_r \nabla : \mathbf{u} - \lambda \mathbf{u} \nabla E_r + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_R} \nabla E_r\right) \\ \partial_t E_r & + & \nabla \cdot [\mathbf{u} E_r] & = & -\mathbb{P}_r \nabla : \mathbf{u} + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_R} \nabla E_r\right) + \kappa_P \rho c (a_R T^4 - E_r) \\ \partial_t B & - & \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times E_{AD} & = & 0 \\ \hline \mathbf{Gravitational} & \mathbf{Radiative} \end{array}$$

- ✓ Adaptive-mesh-refinement code RAMSES (Teyssier 2002)
- ✓ Non-ideal MHD solver using Constrained Transport (Teyssier et al. 2006, Fromang et al. 2006, Masson et al. 2012,2016). In this work, just ambipolar diffusion with resistivity from equilibrium gas-grain chemistry (Marchand et al. 2016)
- ✓ Multifrequency Radiation-HD solver using the Flux Limited Diffusion approximation (Commerçon et al. 2011, 2014, González et al. 2015). In this work, just grey
- ✓ Sink particles using clump finder algorithm (Bleuler & Teyssier 2014)
- ✓ Gas-grain opacities from Semenov et al. (2003)

$$\begin{array}{rcl} \partial_t \rho & + & \nabla \cdot [\rho \mathbf{u}] & = & 0 \\ \partial_t \rho \mathbf{u} & + & \nabla \cdot [\rho \mathbf{u} \otimes \mathbf{u} + P \mathbb{I}] & = & -\rho \nabla \Phi - \lambda \nabla E_r + (\nabla \times \mathbf{B}) \times \mathbf{B} \\ \partial_t E_T & + & \nabla \cdot [\mathbf{u} (E_T + P_T) - \mathbf{B} (\mathbf{B} \cdot \mathbf{u}) - E_{AD} \times \mathbf{B}] & = & -\rho \mathbf{u} \cdot \nabla \Phi - \mathbb{P}_r \nabla : \mathbf{u} - \lambda \mathbf{u} \nabla E_r + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_R} \nabla E_r\right) \\ \partial_t E_r & + & \nabla \cdot [\mathbf{u} E_r] & = & -\mathbb{P}_r \nabla : \mathbf{u} + \nabla \cdot \left(\frac{c\lambda}{\rho \kappa_R} \nabla E_r\right) + \kappa_P \rho c (a_R T^4 - E_r) \\ \partial_t B & - & \nabla \times (\mathbf{u} \times \mathbf{B}) - \nabla \times E_{AD} & = & 0 \\ \hline \mathbf{Gravitational} & \mathbf{Radiative} & \mathbf{Lorentz force} \end{array}$$

Spherical collapse

$$\alpha = 0.50 = E_{th}/E_{grav}$$

- ✓ spherical symmetry conserved
- ✓ 1st core properties similar to Masunaga et al. (1999)
- accretion shock: supercritical radiative shock, i.e all the incident kinetic energy is radiated away (Commerçon et al. 2011b)

Commerçon et al. 2011a

Spherical collapse

$$\alpha = 0.50 = E_{th}/E_{grav}$$

- ✓ spherical symmetry conserved
- ✓ 1st core properties similar to Masunaga et al. (1999)
- accretion shock: supercritical radiative shock, i.e all the incident kinetic energy is radiated away (Commerçon et al. 2011b)

Commerçon et al. 2011a

1 Mo dense core collapse: Hydro

x (AU)

x (AU)

x (AU)
1 Mo dense core collapse: Hydro

x (AU)

x (AU)

x (AU)

1 Mo dense core collapse: Hydro

1 Mo dense core collapse: Hydro vs. μ =5

Comparison to the barotropic case

Hydro case: more fragmentation
RMHD: magnetic braking <=> radiative feedback (L_{acc})

1 Mo dense core collapse: FLD vs. barotrop

Comparison to the barotropic case

- Hydro case: more fragmentation
- **RMHD**: **magnetic** braking <=> radiative feedback (L_{acc})
- Significant differences in the temperature distribution

<=> observations

Commerçon et al. 2010, A&AL

Intermediate case, $\mu = 20$ - Numerical issue

Intermediate case, $\mu = 20$ - Numerical issue

✓ **Diffusivity** of the solver => 2 effects that favor fragmentation:

- inefficient magnetic braking
- ➡ more massive disk

✓ Radiative feedback depends on the magnetic braking: L_{acc} ~ V_{inf}³ (supercritical radiative shock)!

Influence of the magnetization

Influence of the magnetization

Influence of the magnetization

Disk formation in magnetised cores

Late formation

end of class 0, M_{env} << M_{env,0} (e.g., Machida & Hosokawa 2013)

Misalignment

- In reason for the rotation axis and the magnetic field to be aligned (e.g., Hull et al. 2013)
- reduces magnetic braking efficiency (e.g. Hennebelle & Ciardi 2009, Joos et al. 2012, Li et al. 2013)

Turbulent diffusion

reconnection events fast with Ohmic diffusion only, collective effect at larger scale (e.g. Santos Lima et al. 2012, Joos et al. 2013, Seifried et al. 2013)

Non-ideal MHD

- Ohm dissipation (Tomida et al. 2013, 2015, Machida et al.)
- Hall effect (Krasnopolsky et al. 2011, Tsukamoto et al. 2015, Wurster et al. 2016)
- ambipolar diffusion (Tsukamoto et al. 2015, Masson et al. 2016, Wurster et al. 2016)

Non ideal MHD

$$\begin{aligned} \frac{\partial \mathbf{B}}{\partial t} &= \mathbf{\nabla} \times \left[\mathbf{v}_{n} \times \mathbf{B} \right] \\ &- \eta_{\Omega} (\mathbf{\nabla} \times \mathbf{B}) \\ &- \eta_{H} \left\{ (\mathbf{\nabla} \times \mathbf{B}) \times \frac{\mathbf{B}}{\|\mathbf{B}\|} \right\} \\ &- \eta_{AD} \frac{\mathbf{B}}{\|\mathbf{B}\|} \times \left\{ (\mathbf{\nabla} \times \mathbf{B}) \times \frac{\mathbf{B}}{\|\mathbf{B}\|} \right\} \end{aligned}$$

Non-ideal effects:

- rearrangement of magnetic field lines
- reconnection
- magnetic flux diffusion
- ... needs gas-grain chemistry

Non ideal MHD

Marchand et al. (2016)

Influence of non-ideal MHD

Rotation and interchange instability

reduce magnetic braking
 (suppress counter-rotation found in ideal MHD)

Masson et al. (2016)

Influence of non-ideal MHD

Rotation and interchange instability

- reduce magnetic braking
 (suppress counter-rotation found in ideal MHD)
 reduce development of interchange instability
- changes at the first core scalediffusion is *controlled*

J. Masson PhD

Misalignment & ambipolar diffusion

- Rotationally supported disk formation (R ~ 50 AU) - consistent with obs.
- disk size **depends** on misalignment
- P_{therm}/P_{mag}>1 within disks
- poloidal magnetic field
- => initial conditions for protoplanetary disks studies

Masson et al. 2016

- formation of a **plateau** at B~0.1G
- reorganisation of magnetic field lines (essentially poloidal)
- => reduced magnetic braking
- mass and radius of first core do not change
- weaker outflows compared to ideal MHD

Turbulence & ambipolar diffusion

Turbulence & ambipolar diffusion

Late evolution

Towards synthetic observations

- 3 representative cases

MU2: pseudo-disk + outflowMU10: disk + pseudo-disk + outflowMU200: disk + fragmentation

- First core lifetime:

MU2	MU10	MU200	
1.2 kyr	3 kyr	> 4 kyr	

Images & SED computed with the radiative transfer code RADMC-3D, developed by C.
 Dullemond (ITA Heidelberg)
 T_{dust} =T_{gas} (given by the RMHD calculations)

Commerçon, Launhardt, Dullemond & Henning, A&A 2012

SED - Do we see a first core signature?

- Prestellar core = initial conditions (black line)
- Emission in the FIR => HERSCHEL, SPITZER
- But similar SEDs in the MU200 model, i.e. with a disk!
- => Issues in SED-fitting models for early Class 0?

Help to select first core candidates & to distinguish starless cores and first cores

SED - Do we see a first core signature?

Synthetic ALMA dust emission maps

- Fragmentation crisis at the Class 0 stage for low mass star formation - No massive, extended & fragmented disk
- Magnetic field cannot be neglected
- Supported by observations, no large disks (e.g. Maury et al. 2010)

1. Introduction

2. Methods

• AMR vs. SPH

3. Low mass dense core collapse

- RHD and RMHD collapse
- Disk formation and fragmentation crisis
- Synthetic observations

4. Massive dense cores collapse

- Early fragmentation inhibition
- Disk & outflow formation

High mass star formation scenarii

Competitive accretion (Bate, Bonnell et al.)

- Massive prestellar core does not exist
- Star clusters and massive stars form simultaneously (*Smith et al. 2009*)

• Gravitational collapse (Krumholz et al.)

- Massive prestellar does exist
- Fragmentation suppressed by protostellar feedback

• Column density threshold $\Sigma = 1$ g cm⁻² (Krumholz & McKee 2008)

• But... to date:

- Magnetic field neglected
- More or less crude resolution
- Initial fragmentation

High-mass star formation: 100 M_☉ magnetized, turbulent and dense core w. FLD (follow-up of Hennebelle et al. 2011 barotropic study)
 => Influence of the magnetic field strength and radiative transfer on collapse, outflow launching and fragmentation

 $-T_0 = 10 \text{ K}$

- Kolmogorov initial power spectrum $P(k) \propto k^{-5/3}$ - Flat profile $\rho(r) = \frac{\rho_c}{1 + (r/r_0)^2}$ $\rho_c = 1.4 \times 10^{-20} \text{ g cm}^{-3}$ $r_0 \sim 0.22 \text{ pc}$

High-mass star formation: 100 M_☉ magnetized, turbulent and dense core w. FLD (follow-up of Hennebelle et al. 2011 barotropic study)
 => Influence of the magnetic field strength and radiative transfer on collapse, outflow launching and fragmentation

Hennebelle et al. 2011

High-mass star formation: 100 M_☉ magnetized, turbulent and dense core w. FLD (follow-up of Hennebelle et al. 2011 barotropic study)
 => Influence of the magnetic field strength and radiative transfer on collapse, outflow launching and fragmentation

Model	μ	$lpha_{ m turb}$	Δx_{min} (AU)	Coarse grid	$t_0~({ m Myr})$
SPHYDRO	∞	$\sim 10^{-5}$	2.16	128^{3}	0.4786
MU130	~ 136	~ 0.2	2.16	256^{3}	0.4935
MU5	~ 5.3	~ 0.2	2.16	256^{3}	0.5397
MU2	~ 2.3	~ 0.2	2.16	256^{3}	0.5982

✓ Trend confirmed with lower resolution runs:

What's different?

Key physical process: combined effect of magnetic braking and radiative transfer (Commerçon et al. 2010) Key physical process: combined effect of magnetic braking and radiative transfer (Commerçon et al. 2010) Key physical process: combined effect of magnetic braking and radiative transfer (Commerçon et al. 2010)

✓ Magnetic braking: magnetization / accretion rate /
Key physical process: combined effect of magnetic braking and radiative transfer (Commerçon et al. 2010)

- ✓ Magnetic braking: magnetization / accretion rate /
- ✓ Accretion shock on the 1st hydrostatic core: all the infall kinetic energy radiated away (Commerçon et al. 2011b)

Key physical process: combined effect of magnetic braking and radiative transfer (Commerçon et al. 2010)

- ✓ Magnetic braking: magnetization / accretion rate /
- ✓ Accretion shock on the 1st hydrostatic core: all the infall kinetic energy radiated away (Commerçon et al. 2011b)

SPHYDRO	MU130	MU5	MU2
30	0,2	I,2	10

Towards massive star formation?

- Low magnetic field: fragmentation crisis, protostellar feedback would not help
 - similar to previous studies neglecting magnetic fields (competitive accretion), or having a too low resolution (Peters et al. 2011)
 - \star Can magnetic field be neglecting?
- ✓ Intermediate magnetization: 2 fragments arranged in a filamentary like structure. Secondary fragment not produced by disk fragmentation (Krumholz et al.).
 - ➡ OB association formation
- ✓ High magnetization: I single fragment
 - Isolated massive star formation (e.g. observations by Girart et al., Bestenlehner et al. & Bressert et al.)
 - → Further evolution by disk accretion (e.g. Kuiper et al. 2010)
 - ★ Need longer time integration, sink particles

100 M $_{\odot}$ turbulent dense core collapse

Simulations reproduce remarkably well observations, but... for both the strong and weak magnetized cases.
find only one correlation for the number of mm-clumps versus the density at 0.05 pc, i.e., the denser the more fragmented.

Palau et al., 2013 & 2014, ApJ

- Fragmentation can be inhibited in massive dense cores
- Highly magnetized massive dense cores => progenitors of high mass stars

Formation of massive stars in magnetised cores

- ✓ Focus on isolated massive core, threaded by regular magnetic fields
- ✓ Interplay between magnetic braking and radiative feedback reduces efficiently fragmentation (Commerçon et al. 2011, Myers et al. 2013)
- ✓ Choice of slowly rotating cores to focus on the star-disk-outflow system formation, without strong fragmentation

Commerçon et al. 2011

Initial conditions and stellar evolution

- ✓ 100 M_☉; $\rho_{\propto}R^{-2}$ ($\rho_c=2x10^6$ cm⁻³); T = 20 K; R₀ = 0.2 pc
- ✓ Solid body rotation Ω =3x10⁻¹⁵ Hz (r_d~650 AU)
- ✓ Uniform magnetic field (µ_{uni}=2,5,∞) (B=170, 68, 0 µG), aligned with rotation axis (x-axis)
- ✓ at least 10 cells/Jeans length
- ✓ Sink particles : ρ_{thre} = 10¹⁰ cm⁻³, r_{sink} = ~20 AU (4 Δx_{min})
- ✓ Protostellar feedback sources associated to the sink:
 - ★ internal luminosity given by Hosokawa et al. tracks (R. Kuiper), Lacc=0
 - ★ all the accreted mass goes in stellar content (most favorable case)
 - ★ NO sub-grid model for outflow
- ✓ 4 models: Hydro, IMHD μ =2, ambipolar diffusion μ =2 and μ =5

Hydro collapse

Hydro collapse

Hydro collapse

iMHD collapse, $\mu = 2$

iMHD collapse, $\mu = 2$

iMHD collapse, $\mu = 2$

Hydro & iMHD: origin of the outflow

- Outflow has a radiative origin
- Magnetic fields disorganised by magnetic flux expulsion (interchange instability, e.g., Masson et al. 2016)

Outflow morphology

Outflow morphology

Outflow collimation

 ✓ outflow collimated by toroidal B-field
 ✓ outflow extends up to 50 000 AU when M★=12M_☉, V_{out,max}=40 km/s

\checkmark outflow is strongly magnetized

Is radiative feedback important?

radiative force contributes to the outflow, but does not dominate over the Lorentz force

Discs properties

Discs properties

20

1.6

1.2

0.8

0.4

 $\log(\beta)$ 0.0

-0.4

-0.8

-1.2

-1.6

-2.0

- ✓ discs are dominated by thermal pressure with AD (i.e. hydro discs)
- ✓ thick and magnetised disk with iMHD

Magnetisation

- ✓ Bmax reduced by > I order of magnitude by AD
- ✓ plateau @ B<IG
- ✓ similar to results found in
- low mass star formation

Magnetisation

- ✓ Bmax reduced by > I order of magnitude by AD
- ✓ plateau @ B<IG
- ✓ similar to results found in
- low mass star formation

Magnetisation

- ✓ Bmax reduced by > I order of magnitude by AD
- ✓ plateau @ B<IG</p>
- ✓ similar to results found in low mass star formation

Take away III

- Outflow is primarily of magnetic origin
- Magnetic outflow extends up to 50 000 AU in massive cores
- \mathbf{M} Radiative force does not overtake with M_{\star} <15 M_{\odot}, but
 - contributes to acceleration
- Mo large disk R<500 AU
- observational diagnostics
- ideal MHD and hydro models have strong limitations wrt
 - 1. outflow launching
 - 2. disk properties (as well as for low-mass star formation...)
 - 3. angular momentum transport

THANK YOU