
Grid data visualization and VisIt
International School of Computational Astrophysics
Jean M. Favre, CSCS
May 25-27, 2016

Outline

 Introduction to VisIt (10 min)

 Data format and I/O libs (15 min)

 AMR Vis (e.g. Chombo) (15 min)

 Pause (5 min)

 Python scripting (10 min)

 Filtering and Analysis (20 min)

 Intro to In-situ Visualization (15 min)

Grid Data Visualization and VisIt

Plan

 Re-use parts of tutorials which are on-line on the very rich Wiki of visitusers.org

 Give some live demonstration

 Give a general idea of the numerous and various features of VisIt. The time is
very short to be exhaustive.

 Fasten your seatbelt. I am going to go fast. I apologize. 

 I will be available as much as possible, even after the exercises to address your
questions. Do not hesitate to come to me.

Grid Data Visualization and VisIt

Visualization is many complementary things

Presentation GraphicsVisual
DebuggingVisual Debugging

Quantitative Analysis

Project Introduction

Data Exploration Comparative Analysis

?
=

Grid Data Visualization and VisIt

The VisIt Visualization Pipeline (borrowed from the SC13 tutorial)

Effective HPC Visualization and
Data Analysis using VisIt

LLNL-PRES-ZZZZZZ
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Terminology

 Meshes: discretization of physical space
 Contains “zones” / “cells” / “elements”
 Contains “nodes” / “points” / “vertices”
 VisIt speak: zone & node

 Fields: variables stored on a mesh
 Scalar: 1 value per zone/node
 Example: pressure, density, temperature

 Vector: 3 values per zone/node (direction)
 Example: velocity

 Note: 2 values for 2D, 3 values for 3D
 More fields discussed later…

Plotting Techniques

Grid Data Visualization and VisIt

Pseudocolor

 Maps scalar fields (e.g., density, pressure, temperature) to colors.

Plotting Techniques

Grid Data Visualization and VisIt

Contour / Isosurface
Plotting Techniques

Grid Data Visualization and VisIt

Volume rendering

Emitter

Film/image

Plotting Techniques

Grid Data Visualization and VisIt

Particle advection: the foundation of flow visualization

 Displace massless particle
based on velocity field

 S(t) = position of curve at time t
 S(t0) = p0

 t0: initial time
 p0: initial position

 S’(t) = v(t, S(t))
 v(t, p): velocity at time t and position p
 S’(t): derivative of the integral curve at

time t

Grid Data Visualization and VisIt

Streamlines
Plotting Techniques

Grid Data Visualization and VisIt

Meshes

 All data in VisIt lives on a mesh
 Discretizes space into points and

cells
 (1D, 2D, 3D) + time
 Mesh dimension need not match spatial

dimension (e.g. 2D surface in 3D space)
 Provides a place for data to be

located
 Defines how data is interpolated

Unstructured

RectilinearCurve

Curvilinear

Points Molecular

Mesh Types

Data representation for mesh-based HPC simulations

Grid Data Visualization and VisIt

Variables

 Scalars, Vectors, Tensors

 Associated with points or cells of a mesh
 Points: linear interpolation
 Cells: piecewise constant

 Can have different dimensionality than the mesh
(e.g. 3D vector data on a 2D mesh)

Cell Data

Point Data

Vector Data Tensor Data

Data representation for mesh-based HPC simulations

Grid Data Visualization and VisIt

Materials

 Describes disjoint spatial regions at a sub-
grid level

 Volume/area fractions

 VisIt will do high-quality sub-grid material
interface reconstruction

Data representation for mesh-based HPC simulations

Grid Data Visualization and VisIt

Species

 Similar to materials, describes sub-grid variable composition
 Example: Material “Air” is made of species “N2” ,“O2”, “Ar”, “CO2”, etc.

 Used for mass fractions

 Generally used to weight other scalars
(e.g. partial pressure)

Data representation for mesh-based HPC simulations

Grid Data Visualization and VisIt

VisIt’s core abstractions

 Databases: How datasets are read
 Plots: How you render data
 Operators: How you manipulate data
 Expressions: Mechanism for generating derived quantities
 Queries: How to access quantitative information

Example VisIt Pipelines

Grid Data Visualization and VisIt

Examples of VisIt Pipelines

 Databases: how you read
data

 Plots: how you render data
 Operators: how you

transform/manipulate data
 Expressions: how you

create new fields
 Queries: how you pull out

quantitative information

Open a database,
which reads from a file
(example: open file1.hdf5)

Database

Make a plot of a variable in
the database
(example: Volume plot)

Plot

Example VisIt Pipelines

Grid Data Visualization and VisIt

Examples of VisIt Pipelines

 Databases: how you read
data

 Plots: how you render data
 Operators: how you

transform/manipulate data
 Expressions: how you

create new fields
 Queries: how you pull out

quantitative information

Open a database,
which reads from a file
(example: open file1.hdf5)

Database

Plot a variable in the database
(example: Pseudocolor plot)Plot

Apply an operator to transform
the data
(example: Slice operator)

Operator

Example VisIt Pipelines

Grid Data Visualization and VisIt

Examples of VisIt Pipelines

 Databases: how you read
data

 Plots: how you render data
 Operators: how you

transform/manipulate data
 Expressions: how you

create new fields
 Queries: how you pull out

quantitative information

Open a database,
which reads from a file
(example: open file1.hdf5)Database

Plot a variable in the
database
(example: Pseudocolor plot)Plot

Apply an operator to
transform the data
(example: Slice operator)Operator 1

Apply a second operator to
transform the data
(example: Elevate operator)

Operator 2

Example VisIt Pipelines

Grid Data Visualization and VisIt

Examples of VisIt Pipelines

 Databases: how you read
data

 Plots: how you render data
 Operators: how you

transform/manipulate data
 Expressions: how you

create new fields
 Queries: how you pull out

quantitative information

Open a database,
which reads from a file
(example: open file1.hdf5)

Database

Plot the expression variable
(example: Pseudocolor plot)Plot

Create derived quantities from
fields in the file
(example:
magnitude(velocity))

Expression

Example VisIt Pipelines

Grid Data Visualization and VisIt

Examples of VisIt Pipelines

 Databases: how you read
data

 Plots: how you render data
 Operators: how you

transform/manipulate data
 Expressions: how you

create new fields
 Queries: how you pull out

quantitative information

Open a database,
which reads from a file
(example: open file1.hdf5)

Database

Extract quantitative information
(example: integrate density to
find mass)

Query

Plot a field from the file
(example: density + Pseudocolor
plot)

Plot

Example VisIt Pipelines

Grid Data Visualization and VisIt

Examples of VisIt Pipelines

 Databases: how you read
data

 Plots: how you render data
 Operators: how you

transform/manipulate data
 Expressions: how you

create new fields
 Queries: how you pull out

quantitative information

Open a database,
which reads from a file
(example: open file1.hdf5)

Database

Create derived quantities from
fields in the file
(example: magnitude(velocity))

Expression

Apply an operator to transform
the data
(example: Slice operator)

Operator 1

Apply a second operator to
transform the data
(example: Elevate operator)

Operator 2

Plot a field
(example: speed + Pseudocolor
plot)

Plot

Extract quantitative information
(example: maximum speed over
cross-section)

Query

Example VisIt Pipelines

Grid Data Visualization and VisIt

Data format and I/O libs

Prelude

Data formats

 Interface between simulations and visualization

 Many formats exist. Pick the most appropriate

 High level libraries (HDF5, netCDF, …)

 Raw data vs. self.described formats

 Parallel I/O

Grid Data Visualization and VisIt

Data formats

Purpose of I/O
 Archive results to file(s)
 Provide check-point / restart files
 Analysis
 Visualization
 Debugging simulations

Requirements
 Fast, parallel, selective
 Independent of the number of processors (tasks)
 Self-documented

Grid Data Visualization and VisIt

Data formats

 Community specific

 CGNS, CCSM, NEK5000, H5Part, Chombo, ENZO, RAMSES,
 Ad-hoc

 Make up your own
 Many formats exist. Choose the most appropriate
 High level libraries (HDF5, netCDF, …) and usage conventions

Grid Data Visualization and VisIt

I/O strategies

 Serial I/O: each process writes its own output.
 Make sure each single file can be read independently
 Have a method to combine them all (without file concatenation)

 Parallel I/O: a collective operation writes a single file, each process placing data
at the correct offset.

 Transient data: use one of the above method, for every N timesteps.

Grid Data Visualization and VisIt

Parallel processing, but serial I/O:

Each process writes its own file independently,
A 64x64x64x4 block of floats

Each file can also be gzipped

Grid Data Visualization and VisIt

A very simple raw data (mono-block) file, but still many challenges

Read it in VisIt. Visualize in parallel?
 Find erroneous data. Where? i,j coordinates? rank ? value? neighbors?
 Plot node’s value over time?
 Find mean, at current time, a mean-over-time?
 Find first timestep when “condition is true”
 Compare serial output with:

 OpenMP output ?
 MPI output ?
 CUDA output ?

 Compare solution at time T1, with solution at time T2?
 Compare solution on grids of different resolutions?

Grid Data Visualization and VisIt

Raw-binary data

 What is good about it?

 What is bad about it?

Grid Data Visualization and VisIt

Performance! Subsettting!

What’s inside? variable name? resolution? Endiandness? Precision? Intended use?
Who created it? When? Which version of code? Which compiler? Architecture?

Meta-data versus raw-data

 We’ll see two ways to define the meta-data necessary to be able to make sense
of the binary data

 BOV format (starting at page 9 of the manual)

 Xdmf format

Grid Data Visualization and VisIt

https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf
http://www.xdmf.org/index.php/Main_Page

Brick of Values (BOV) format read by VisIt

VisIt can read raw binary data with the following header file

BOV version: 1.0
serial I/O output file
TIME: 0.01
DATA_FILE: output.80.000.bin
DATA SIZE: 64 64 1
DATA_ENDIAN: LITTLE
DATA FORMAT: DOUBLE
VARIABLE: phi
CENTERING: nodal
BRICK SIZE: 0.5 0.5 1.0
BRICK ORIGIN: 0.0 0.0 0.0

Grid Data Visualization and VisIt

The raw data can also be read by numpy

import numpy as np

phi = np.fromfile(“output.bin”, dtype=np.float64, count=-1, sep=“”)

What are the dimensions of this array?

phi.shape => (16384,)

We will need to use it as an array of dimensions (128, 128) later on…

Grid Data Visualization and VisIt

Use independent (serial) I/O

 Create one file per process

Grid Data Visualization and VisIt

Brick of Values (BOV) format read by VisIt

VisIt puts all the serial pieces together with the following header

BOV version: 1.0
serial I/O output files, recombined
TIME: 0.01
DATA_FILE: benchmark.200.%03d.bin
DATA SIZE: 128 128 1
DATA_BRICKLETS: 64 64 1
DATA FORMAT: DOUBLE
DATA_ENDIAN: LITTLE
VARIABLE: phi
BRICK ORIGIN: 0.0 0.0 0.0
BRICK SIZE: 1.0 1.0 1.0

Grid Data Visualization and VisIt

Xdmf format read by VisIt

Xdmf provides the “Data model”, i.e. the intended use of the data

Its size, shape, dimensions, variable names, etc…

Data format refers to the raw data to be manipulated. Information like number type (float, integer,
etc.), precision, location, rank, and dimensions completely describe any dataset regardless of its
size.

The description of the data is separate from the values themselves.

We refer to the description of the data as Light data and the values themselves as Heavy data. Light
data is small and can be passed between modules easily. Heavy data may be potentially enormous.

Example: a three dimensional array of floating point values may be the X,Y,Z geometry for a grid or
calculated vector values. Without a data model, it is impossible to tell the difference.

Grid Data Visualization and VisIt

http://www.xdmf.org/

Xdmf enables a richer description than BOV

 A Domain can have one or more Grid elements. Each Grid contains
a Topology, Geometry, and zero or more Attribute elements. Topology specifies
the connectivity of the grid while Geometry specifies the location of the grid
nodes. Attribute elements are used to specify values such as scalars and vectors
that are located at the node, edge, face, cell center, or grid center.

 Example: Structured
• 2DSMesh - Curvilinear
• 2DRectMesh - Axis are perpendicular
• 2DCoRectMesh - Axis are perpendicular and spacing is constant
• 3DSMesh
• 3DRectMesh
• 3DCoRectMesh

Grid Data Visualization and VisIt

Xdmf format can describe the raw data
<?xml version="1.0" ?>
<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []>
<Xdmf xmlns:xi="http://www.w3.org/2003/XInclude" Version="2.2">
<Domain>
<Grid Name="Mesh" GridType="Uniform">
<Topology TopologyType="3DCORECTMESH" Dimensions="1 128 128"/>
<Geometry GeometryType="ORIGIN_DXDYDZ">

<DataItem Name="Origin" NumberType="Float" Dimensions="3" Format="XML">0. 0. 0.</DataItem>
<DataItem Name="Spacing" NumberType="Float" Dimensions="3" Format="XML">1. 1. 1.</DataItem>

</Geometry>
<Attribute Name="phi" Active="1" AttributeType="Scalar" Center="Node">

<DataItem Dimensions="1 128 128" NumberType="Float" Precision="8“ Format="Binary">output.bin</DataItem>
</Attribute>

</Grid>
</Domain>

</Xdmf>

Grid Data Visualization and VisIt

A high-level I/O library HDF5

An HDF5 file is a container for storing a variety of scientific data and is composed of two primary
types of objects
 HDF5 group: a grouping structure containing zero or more HDF5 objects, together with supporting

metadata
 HDF5 dataset: a multidimensional array of data elements, together with supporting metadata
Any HDF5 group or dataset may have an associated attribute list. An HDF5 attribute is a user-
defined HDF5 structure that provides extra information about an HDF5 object.
Working with groups and datasets is similar in many ways to working with directories and files in
UNIX. As with UNIX directories and files, an HDF5 object in an HDF5 file is often referred to by its full
path name (also called an absolute path name).

 / signifies the root group.
 /foo signifies a member of the root group called foo.
 /foo/zoo signifies a member of the group foo, which in turn is a member of the root group.

Grid Data Visualization and VisIt

https://www.hdfgroup.org/HDF5/Tutor/introductory.html

The raw data can also be re-written as HDF5

import numpy as np

import h5py

phi = np.fromfile(“output.bin”, dtype=np.float64, count=-1, sep=“”)

out = h5py.File("output.h5","w")

g_id = out.create_group("data")

g_id.create_dataset("phi", (128, 128), np.double, phi)

out.close()

Use “hdfview”, “h5ls –r”, “h5dump –d data/phi”

Grid Data Visualization and VisIt

The raw data can also be converted as HDF5
We need a Data Description Language (DDL) input file:

HDF5 "output.h5" {
DATASET "/data/phi" {

DATATYPE H5T_IEEE_F64LE
DATASPACE SIMPLE { (128, 128) / (128, 128) }
DATA {
}

}
}

H5import output.bin –c ddl.txt –o output.h5

See online reference

Grid Data Visualization and VisIt

https://www.hdfgroup.org/HDF5/Tutor/cmdtoolcvrt.html

Advantages of HDF5

Self-described (but we’re still missing the meaning of the data array)

In [11]: input = h5py.File("output.h5", "r")
In [12]: input.values()
Out[12]: [<HDF5 group "/data" (1 members)>]
In [13]: input['data']
Out[13]: <HDF5 group "/data" (1 members)>
In [14]: input['data'].values()
Out[14]: [<HDF5 dataset "phi": shape (128, 128), type "<f8">]
In [15]: phi = input['data']['phi']
In [16]: phi.shape
Out[16]: (128, 128)

Grid Data Visualization and VisIt

Xdmf format can also describe the HDF5 data

<?xml version="1.0" ?>

<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []>

<Xdmf xmlns:xi="http://www.w3.org/2003/XInclude" Version="2.2">

<Domain>

<Grid Name="Mesh" GridType="Uniform">

<Topology TopologyType="3DCORECTMESH" Dimensions="1 128 128"/>

<Geometry GeometryType="ORIGIN_DXDYDZ">

<DataItem Name="Origin" NumberType="Float" Dimensions="3" Format="XML">0. 0. 0.</DataItem>

<DataItem Name="Spacing" NumberType="Float" Dimensions="3" Format="XML">1. 1. 1.</DataItem>

</Geometry>

<Attribute Name="phi" Active="1" AttributeType="Scalar" Center="Node">

<DataItem Dimensions="1 128 128" NumberType="Float" Precision="8“

Format=“HDF5">output.h5:/data/phi</DataItem>

</Attribute>

</Grid>

</Domain>
Grid Data Visualization and VisIt

The Xdmf format can describe a time series of datasets

 Reading_a_time_varying_Raw_file_series

Grid Data Visualization and VisIt

http://www.paraview.org/Wiki/ParaView/Data_formats#Reading_a_time_varying_Raw_file_into_Paraview

Parallel I/O

Grid Data Visualization and VisIt

Data formats and Parallelism

 MPI-IO

 Raw data parallelism
 Some can be read by VisIt (BOV format)

 ADIOS

 Raw data but complexity is hidden
 HDF5, NetCDF

 content-discovery is possible, but semantic is not given
 SILO

 Poor man’s parallelism (1 file per process + metafile) but strong semantic

Grid Data Visualization and VisIt

SILO

 https://wci.llnl.gov/simulation/computer-codes/silo

 A very versatile data format. The "Getting Data Into VisIt" manual covers how to
create files of this type. In addition, there are many code examples here

 http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/CreatingCo
mpatible

Grid Data Visualization and VisIt

https://wci.llnl.gov/simulation/computer-codes/silo
https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/CreatingCompatible

SILO

From the User Manual:

 Silo is a serial library. Nevertheless, it (as well as the tools that use it like VisIt)
has several features that enable its effective use in parallel with excellent scaling
behavior.

Grid Data Visualization and VisIt

Summary 1

 Documenting how data files are generated, and what is the intended purpose of
the raw data is of utmost importance.

 Think:
 long-term
 data sharing
 multiple post-processing tools

 Raw binary data is fine. As long as it is augmented with some meta-data headers
such as BOV, or Xdmf, or numpy reading commands.

Grid Data Visualization and VisIt

Summary 2

 Higher level libraries such as HDF5 enable parallel I/O but most importantly,
provide self-documentation about the nature of the raw data

 Yet, interpretation is application-dependent

 There exist ‘conventions of usage’ of HDF5, or netcdf.
 Pixie, Chombo,
 H5Part,
 “CF”

 HDF5 and Xdmf are often used together.

Grid Data Visualization and VisIt

Summary 3

 There exists many formats used by each communities
 Molecular science
 Fluid dynamics
 Astronomy, …

 Your first thought should be to see if you can re-use such formats.

 Warning. Just because you have a visualization software which runs in parallel
does not guarantee that you can read data in parallel…

Grid Data Visualization and VisIt

AMR data handling

Grid Data Visualization and VisIt

Chombo data format with HDF5

Grid Data Visualization and VisIt

 Chombo provides a set of tools for implementing finite difference and finite
volume methods for the solution of partial differential equations on block-
structured adaptively refined rectangular grids

 It uses HDF5 to store its data solution

 Storage is organized by levels of refinement

 For each level, we find
 An array of bounding boxes
 A single array of field values (the concatenation of all field values for all patches)
 An array of offsets for each patch and each variable

 Some global attributes

https://commons.lbl.gov/display/chombo/Chombo+-+Software+for+Adaptive+Solutions+of+Partial+Differential+Equations

Chombo data format with HDF5

Grid Data Visualization and VisIt

Chombo data format with HDF5

Grid Data Visualization and VisIt

 Any code could actually output data using Chombo’s convention

 This ensures compatibility with VisIt

 Alternatively, one can write a VisIt-specific reader plugin (for example A-MAZE)
 It requires an understanding of the internal data structures of VisIt.

With AMR data storage, several opportunities for efficient processing

 AMR Dual Grid and Stitch Cells

 Multi-res Control

 Subsetting

 VisIt’s execution is demand-driven, which means it will only pull in the data
needed to execute a particular pipeline. If you subset BEFORE clicking “Draw”, it
will only read the selected data.

 Astro data is [often] very big. You absolutely must understand the two-pass
execution mode of the VisIt pipeline to scale your visualization.

Grid Data Visualization and VisIt

Python scripting in VisIt

Grid Data Visualization and VisIt

Python scripting

 Easy

 A great time-saver

 Built by examples, or in incremental mode

 Not complete. Needs some fine-tuning to move from interactive use to batch
mode
 => exercises, or questions from you in the second session

Grid Data Visualization and VisIt

See the Wiki

VisIt-tutorial-Python-scripting

The wiki refers to a file called “example.silo”. It is actually a clone of “noise.silo”
(from the distribution)

Grid Data Visualization and VisIt

http://visitusers.org/index.php?title=VisIt-tutorial-Python-scripting

Expressions and Queries

Expressions in VisIt create new mesh variables from existing ones. These are also
known as derived quantities. VisIt's expression system supports only derived
quantities that create a new mesh variable defined over the entire mesh.

Queries define single numerical values

Grid Data Visualization and VisIt

Expressions and Queries examples

Given a mesh on which a variable named pressure is defined, an example of a
very simple expression is

2.0 * pressure

On the other hand, suppose one wanted to sum (or integrate) pressure over the
entire mesh. Such an operation is not an expression in VisIt because it does not
result in a new variable defined over the entire mesh. In this example, summing
pressure over the entire mesh results in a single, scalar, number, like 25.6.

Such an operation is supported by VisIt's Variable Sum Query.

Grid Data Visualization and VisIt

Expressions

Predefined expressions
 VisIt defines several types of expressions automatically. For all vector variables

from a database, VisIt will automatically define the associated magnitude
expressions.

 For unstructured meshes, VisIt will automatically define mesh quality
expressions.

 For any databases consisting of multiple time states, VisIt will define time
derivative expressions.

Grid Data Visualization and VisIt

Derived quantities. Expressions

combine velocity components into a vector
 { vx, vy, vz }
Extract X coordinate of a mesh
 coords(mesh)[0]
Gradient, vorticity, divergence, etc…
 gradient(temperature)
Conditional, relational and logical
 if(gt (temperature, 25.), <then-var>, <else-var>)
 ge(pressure, 0.8)
Time-based
 time_index_at_minimum(temperature, [, start-time-index, stop-time-index, stride])
 first_time_when_condition_is_true (pressure_big, 100, 1, 71, 1)

Grid Data Visualization and VisIt

Cross-mesh field evaluation (CMFE)

 Use the expressions seen earlier and add connectivity-based, or position-based
evaluations

 The expressions to evaluate p from file a.00000 with a default value of 0 onto the mesh
mesh_3d are:

 pos_cmfe(<a.00000:p>, mesh_3d, 0)
 conn_cmfe(<a.00000:p>, mesh_3d)

 The expressions can be complicated, but there is a GUI wizard to assist you in writing
the correct syntax

 Examples:

Grid Data Visualization and VisIt

http://visitusers.org/index.php?title=Cmfe_overview

CMFE Example 1

Difference between two datasets:

N.B. (variable “Density” exists in file f1, on “my_mesh”)

 den_diff = "Density - conn_cmfe(<f2:den>, my_mesh)“

Make a Pseudocolor plot of den_diff

Query with "Weighted Variable Sum". This will integrate the differences (meaning
using volume weighting in 3D or area-weighting in 2D)

Grid Data Visualization and VisIt

CMFE Example 2

Make an average over the previous three time slices:

(conn_cmfe(<[-1]id:varname>, meshname) +

conn_cmfe(<[-2]id:varname>, meshname) +

conn_cmfe(<[-3]id:varname>, meshname)) / 3.

[-1]id -> 'i' means index (as opposed to 'c' for cycle or 't' for time), 'd' means "delta".

Grid Data Visualization and VisIt

CMFE Example 2

Grid Data Visualization and VisIt

Better yet. VisIt has a pre-defined expression:

average_over_time(<varname> [, "pos_cmfe", <fillvar-for-
uncovered-regions>] [, start-index, stop-index, stride])

e.g.,

average_over_time(temp_F , 0, 98, 1)

Query-driven Analysis

Query-driven analysis based on single timestep queries is a versatile tool for the identification and
extraction of temporally persistent and instantaneous data features.

But there is more…

Temporal tracking and refinement of selections based on information from multiple timesteps can
support detailed analysis of the temporal evolution of data features.

⇒ Do Cumulative Queries

Grid Data Visualization and VisIt

Query-driven Analysis

Cumulative Queries open the way to refinement (secondary queries):

1. select records that match the primary query most or least frequently,

2. select only records that match the primary query within a given time frame or at
timesteps with a particularly high or low number of matches,

3. refine the query based on information of data values that have not been used in
query but which show interesting trends with respect to the data subset retrieved
by the query.

Grid Data Visualization and VisIt

Query-driven Analysis

Example in a set of moving particles:
which particles become accelerated,

which locations exhibit high velocities during an extended timeframe,

which particles reach a local maximum energy, or which particles change their state

Example in climatology (earth surface temperature over 100 years):
see the areas on the globe that have warmed the most and have an idea how the has warming
progressed.

see which regions have most frequently been warmer by at least 5 degrees

Grid Data Visualization and VisIt

Time query and histogram-based queries

Example:

 Given a climate dataset with the Earth’s surface temperature for a period of 100
years.

Question:

Which areas on the globe have warmed the most and how has the warming
progressed?

Compute the difference of each year vs. the first year;

Find which regions have most frequently been warmer by at least 5 degrees.

Grid Data Visualization and VisIt

Live demonstration

Grid Data Visualization and VisIt

Cumulative query example in climatology

 Detailed explanation on the wiki

Grid Data Visualization and VisIt

http://visitusers.org/index.php?title=Visit-tutorial-NamedSelections

In-situ visualization

Grid Data Visualization and VisIt

In-situ visualization

 Motivations

 In-situ visualization

 In-situ processing strategies
 VisIt’s libsim library
 Enable visualization in a running simulation
 Source code instrumentation

Grid Data Visualization and VisIt

Facts

 Parallel simulations are now ubiquitous

 The mesh size and number of timesteps are of unprecedented size

 The traditional post-processing model “compute-store-analyze” does not scale

Consequences:
 Datasets are often under-sampled
 Many time steps are never archived
 It takes a supercomputer to re-load and

visualize supercomputer data
Grid Data Visualization and VisIt

When there is too much data…

 Several strategies are available to mitigate the data problem:
• read less data:

• multi-resolution,
• on-demand streaming,

• out-of-core, etc...

• Do no read data from disk but from memory:
in-situ visualization

Grid Data Visualization and VisIt

in-situ (parallel) visualization

Instrument parallel simulations to:
 Eliminate I/O to and from disks
 Use all grid data with or without ghost-cells
 Have access to all time steps, all variables
 Use the available parallel compute nodes
 Maximize features and capabilities
 Minimize code modifications to simulations
 Minimize impact to simulation codes
 Allow users to start an in-situ session on demand instead of deciding before running a

simulation
 Debugging
 Computational steering

Grid Data Visualization and VisIt

in-situ Processing Strategies

In Situ Strategy Description Negative Aspects

Loosely coupled
a.k.a.

“Concurrent
processing”

Visualization and
analysis run on
concurrent resources
and access data over
network

1) Data movement costs
2) Requires separate resources

Tightly coupled
a.k.a.

“Co-processing”

Visualization and
analysis have direct
access to memory of
simulation code

1) Very memory constrained
2) Large potential impact

(performance, crashes)

Hybrid Data is reduced in a
tightly coupled setting
and sent to a
concurrent resource

1) Complex
2) Shares negative aspects (to

a lesser extent) of others

Grid Data Visualization and VisIt

Loosely Coupled in-situ Processing

 I/O layer stages data into secondary
memory buffers, possibly on other
compute nodes

 Visualization applications access the
buffers and obtain data

 Separates visualization processing from
simulation processing

 Copies and moves data

Simulation

data

Memory buffer

data

I/O Layer

Possible network boundary

Visualization tool

read

Grid Data Visualization and VisIt

Tightly Coupled Custom in-situ Processing

 Custom visualization routines are developed
specifically for the simulation and are called
as subroutines
 Create best visual representation
 Optimized for data layout

 Tendency to concentrate on very specific
visualization scenarios

 Write once, use once

Simulation

data

Visualization
Routines

images, etc

Grid Data Visualization and VisIt

Tightly Coupled General in-situ Processing

 Simulation uses data adapter layer to make
data suitable for general purpose
visualization library

 Rich feature set can be called by the
simulation

 Operate directly on the simulation’s data
arrays when possible

 Write once, use many times

images, etc

Simulation

data

Data Adapter

General
Visualization

Library

Grid Data Visualization and VisIt

Li
bs

im
R

un
tim

e

Coupling of Simulations and VisIt

Libsim is a VisIt library that simulations use to enable couplings between
simulations and VisIt. Not a special package. It is part of VisIt.

Simulation

Libsim
Front
End

Data
Access
Code

Libsim
Front End

Data
Access
CodeData

Source

Filter

Filter

Grid Data Visualization and VisIt

In Situ Processing Workflow

1. The simulation code launches and starts execution

2. The simulation regularly checks for connection attempts from visualization tool

3. The visualization tool connects to the visualization

4. The simulation provides a description of its meshes and data types

5. Visualization operations are handled via Libsim and result in data requests to
the simulation

Grid Data Visualization and VisIt

Instrumenting a Simulation

Additions to the source code are usually minimal, and follow three incremental
steps:

Initialize Libsim
and alter the
simulation’s
main iterative
loop to listen
for connections
from VisIt.

Create data
access
callback
functions so
simulation can
share data with
Libsim.

Add control
functions that
let VisIt steer
the simulation.

Grid Data Visualization and VisIt

Connection to the
visualization library
is optional

Execution is step-
by-step or in
continuous mode

Live connection
can be closed and
re-opened at later
time

Exit

Initialize

Check for
convergence

Solve next
time-step

Instrumenting Application’s flow diagram (before and after

Grid Data Visualization and VisIt

VisIt in-the-loop

 Libsim opens
a socket and writes out
connection parameters

VisItDetectInput checks for:
 Connection request
 VisIt commands
 Console input

Exit

Initialize

Check for
convergence

Solve next
time-step

Visualization
requests

complete VisIt
connection

process
commands

runs console
input

VisIt Detect
Input

Grid Data Visualization and VisIt

Summary

 VisIt has a very rich set of database plugins
 Try to re-use a supported file format

 The python interface is the way to automatize visualization and analysis tasks
 Move to batch mode
 Move to paralle execution

 Expressions and queries enable us to go much beyond simply “3D graphics”

 Most of the above is also available in the in-situ interface.

Grid Data Visualization and VisIt

Thank you for your attention.

	Grid data visualization and VisIt
	Outline
	Plan
	Visualization is many complementary things
	The VisIt Visualization Pipeline (borrowed from the SC13 tutorial)
	Slide Number 6
	Terminology
	Pseudocolor
	Contour / Isosurface
	Volume rendering
	Particle advection: the foundation of flow visualization
	Streamlines
	Meshes
	Variables
	Materials
	Species
	VisIt’s core abstractions
	Examples of VisIt Pipelines
	Examples of VisIt Pipelines
	Examples of VisIt Pipelines
	Examples of VisIt Pipelines
	Examples of VisIt Pipelines
	Examples of VisIt Pipelines
	Data format and I/O libs
	Prelude
	Data formats
	Data formats
	I/O strategies
	Parallel processing, but serial I/O:
	A very simple raw data (mono-block) file, but still many challenges
	Raw-binary data
	Meta-data versus raw-data
	Brick of Values (BOV) format read by VisIt
	The raw data can also be read by numpy
	Use independent (serial) I/O
	Brick of Values (BOV) format read by VisIt
	Xdmf format read by VisIt
	Xdmf enables a richer description than BOV
	Xdmf format can describe the raw data
	A high-level I/O library HDF5
	The raw data can also be re-written as HDF5
	The raw data can also be converted as HDF5
	Advantages of HDF5
	Xdmf format can also describe the HDF5 data
	The Xdmf format can describe a time series of datasets
	Parallel I/O
	Data formats and Parallelism
	SILO
	SILO
	Summary 1
	Summary 2
	Summary 3
	AMR data handling
	Chombo data format with HDF5
	Chombo data format with HDF5
	Chombo data format with HDF5
	With AMR data storage, several opportunities for efficient processing
	Python scripting in VisIt
	Python scripting
	See the Wiki
	Expressions and Queries
	Expressions and Queries examples
	Expressions
	Derived quantities. Expressions
	Cross-mesh field evaluation (CMFE)
	CMFE Example 1
	CMFE Example 2
	CMFE Example 2
	Query-driven Analysis
	Query-driven Analysis
	Query-driven Analysis
	Time query and histogram-based queries
	Live demonstration
	Cumulative query example in climatology
	In-situ visualization
	In-situ visualization
	Facts	
	When there is too much data…
	in-situ (parallel) visualization
	in-situ Processing Strategies
	Loosely Coupled in-situ Processing
	Tightly Coupled Custom in-situ Processing
	Tightly Coupled General in-situ Processing
	Coupling of Simulations and VisIt
	In Situ Processing Workflow
	Instrumenting a Simulation
	Instrumenting Application’s flow diagram (before and after
	VisIt in-the-loop
	Summary
	Thank you for your attention.

